dc.contributorCOSTA JÚNIOR, Carlos Tavares da
dc.contributorhttp://lattes.cnpq.br/6328549183075122
dc.contributorSÁ, José Alberto Silva de
dc.contributorhttp://lattes.cnpq.br/9459574384403283
dc.creatorALVES, Elton Rafael
dc.date2018-07-18T16:22:25Z
dc.date2018-07-18T16:22:25Z
dc.date2017-11-30
dc.date.accessioned2023-09-28T15:43:05Z
dc.date.available2023-09-28T15:43:05Z
dc.identifierALVES, Elton Rafael. Previsão de raios utilizando técnicas de inteligência computacional e dados de sondagem atmosférica por satélite. 2017. 202 f. Tese (Doutorado) - Universidade Federal do Pará, Instituto de Tecnologia, Belém, 2017. Programa de Pós-Graduação em Engenharia Elétrica. Disponível em: <http://repositorio.ufpa.br/jspui/handle/2011/10087>. Acesso em:.
dc.identifierhttp://repositorio.ufpa.br/jspui/handle/2011/10087
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9019872
dc.descriptionAtmospheric discharges offer great risks to the population and activities that involve different systems such as telecommunications, energy distribution and transportation and among others. Lightning prediction can contribute to minimize the risks of this natural phenomenon. Therefore, this thesis presents a model for lightning prediction based on satellite atmospheric sounding data, validated with lightning data for study areas of the Amazon region in Brazil, through an investigation that considered five period cases for validation of lightning prediction: case 1 (one hour), case 2 (two hours), case 3 (three hours), case 4 (four hours) and case 5 (five hours). Two different forecasting methodologies were used: the first version of the predictor used data from all study areas in the random formation of the sets training, validation and test. In a second version, we did not use the criterion of randomness of the data in the formation of the training and test sets, and same were limited for each area of the study, in order to create individualized forecasts by geographical area studied. The machine learning technique used to predict lightning was the Artificial Neural Network (ANN) trained with Levenberg-Marquardt backpropagation algorithm to classify modeling related to lightning prediction. This classification relied on the possibility of lightning prediction from the vertical profile of air temperature obtained from satellite NOAA-19. The results obtained by RNA, in the first approach, were compared with traditional methodologies established in the lightning prediction literature, in the second approach the results obtained showed the predictor's output for real test data. Results show that ANN was capable of identifying adequately the class to which a new event belongs to in relation to categories of occurrence and absence of lightning. For the first approach, the best performance for case 5 was obtained, with a test accuracy of 95.6%, while for the second approach a general test accuracy of 82.04% was obtained.
dc.descriptionAs descargas atmosféricas oferecem grande risco à população e às atividades que envolvem diferentes sistemas como telecomunicações, transmissão de energia elétrica, transporte e dentre outros. A previsão de ocorrência de raios pode contribuir para minimizar os riscos deste fenômeno natural. Com isso, esta tese apresenta uma proposta de modelo de previsão de raios baseada na utilização de dados de sondagens atmosféricas por satélite, validado com dados históricos de raios para áreas de estudo da região Amazônica no Brasil, mediante um estudo que considerou cinco casos de período de validade de previsão de raios: caso 1 (uma hora), caso 2 (duas horas), caso 3 (três horas), caso 4 (quatro horas) e caso 5 (cinco horas). Foram utilizadas duas metodologias diferentes de previsão: a primeira versão do previsor utilizou os dados de todas as áreas do estudo na formação aleatória dos conjuntos de treinamento, validação e teste. Em uma segunda versão, não se utilizou o critério de aleatoriedade dos dados na formação dos conjuntos de treinamento e teste, e os mesmos foram limitados para cada área do estudo, de forma a criar previsões individualizadas por área geográfica estudada. A ferramenta de engenharia utilizada para previsão foi uma Rede Neural Artificial (RNA) treinada com o algoritmo Levenberg-Marquardt backpropagation com a finalidade de classificar as modelagens preditivas de raios. A classificação consistiu na possibilidade de prever a ocorrência ou ausência de raios a partir do perfil vertical de temperatura do ar (temperatura do ar e temperatura do ponto de orvalho) obtido pelo satélite NOAA-19. Os resultados obtidos pela RNA, na primeira abordagem, foram comparados com metodologias tradicionais estabelecidas na literatura de previsão de raios, na segunda abordagem os resultados obtidos mostraram a saída do previsor para dados reais de teste. Os resultados de ambas abordagens mostraram que a RNA foi capaz de identificar adequadamente a que classe pertence um novo exemplo em relação às categorias de ocorrência ou ausência de raios. Para a primeira abordagem, obteve-se o melhor desempenho para caso 5, com uma acurácia de teste de 95,6%, enquanto que para a segunda abordagem obteve-se uma acurácia geral de teste de 82,04%.
dc.formatapplication/pdf
dc.languagepor
dc.publisherUniversidade Federal do Pará
dc.publisherBrasil
dc.publisherInstituto de Tecnologia
dc.publisherUFPA
dc.publisherPrograma de Pós-Graduação em Engenharia Elétrica
dc.rightsAcesso Aberto
dc.source1 CD-ROM
dc.subjectSondagem atmosférica por satélite
dc.subjectRedes neurais artificiais
dc.subjectClassificadores
dc.subjectPrevisão de descargas atmosféricas
dc.subjectCNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIA
dc.subjectSISTEMAS DE POTÊNCIA
dc.subjectSISTEMAS DE ENERGIA ELÉTRICA
dc.titlePrevisão de raios utilizando técnicas de inteligência computacional e dados de sondagem atmosférica por satélite
dc.typeTese


Este ítem pertenece a la siguiente institución