dc.creatorORTIZ, NILCE
dc.creatorNASCIMENTO, LUCIA
dc.creatorMAICHIN, FERNANDA
dc.creatorAZEVEDO, IZABELA R.L.C.
dc.creatorVIEIRA, MARILIA G.
dc.date2020
dc.date2021-02-23T18:42:38Z
dc.date2021-02-23T18:42:38Z
dc.date.accessioned2023-09-28T14:17:47Z
dc.date.available2023-09-28T14:17:47Z
dc.identifier2327-6045
dc.identifierhttp://repositorio.ipen.br/handle/123456789/31801
dc.identifier7
dc.identifier8
dc.identifier10.4236/msce.2020.87002
dc.identifier0000-0002-7737-3732
dc.identifierSem Percentil
dc.identifierSem Percentil CiteScore
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9002024
dc.descriptionThe detection of the pharmaceutical compounds used in human and veterinary medicine is in several environmental matrices (surface waters, effluents, groundwater, soils, and sediments), and such presence promotes the resistance bacteria development, making them ineffective in some diseases treatment. The research project promotes the TiO2 synthesis using yeast culture as biotemplate, the step followed by the microstructure characterization with surface area enhancement; such properties are responsible for the improvement of solar photodecomposition processes of the veterinary antibiotic oxytetracycline. In such simple and standard process conditions the system reaches about 84% of removal percentage with a better agreement with the pseudo-first-order with the Pearson coefficient in the range from 0.82 to 0.94 and K1 = 0.035 M???1???s???1. The degradation rate constant increased with the increasing initial Yeast-TiO2 dosage until the maximum mass of 0.1 g or with the decreasing of initial oxytetracycline concentration. The solar light used as a sustainable irradiation source is abundant and low cost in tropical countries, perfect to be applied in water treatment to decompose the pharmaceuticals pollutants, as the veterinarian antibiotics. The study demonstrates that solar photodecomposition is an efficient treatment technology for the removal of antibiotics from polluted water and provides insightful information on the potential practical application of this technology to treat contaminated water, possibly also in rural, distant areas.
dc.format12-26
dc.relationJournal of Materials Science and Chemical Engineering
dc.rightsopenAccess
dc.subjectdecomposition
dc.subjecttitanium oxides
dc.subjectoxytetracycline
dc.subjectyeasts
dc.subjectsolar energy
dc.subjectsolar radiation
dc.subjectantibiotics
dc.titleYeast-TiO2 biotemplate for oxytetracycline solar photodecomposition
dc.typeArtigo de peri??dico
dc.coverageI


Este ítem pertenece a la siguiente institución