dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorFraga, Eduardo S.
dc.creatorKrein, Gastão
dc.creatorPalhares, Letícia F.
dc.date2014-05-27T11:30:50Z
dc.date2016-10-25T18:54:54Z
dc.date2014-05-27T11:30:50Z
dc.date2016-10-25T18:54:54Z
dc.date2013-10-09
dc.date.accessioned2017-04-06T02:41:32Z
dc.date.available2017-04-06T02:41:32Z
dc.identifierPhysica A: Statistical Mechanics and its Applications.
dc.identifier0378-4371
dc.identifierhttp://hdl.handle.net/11449/76813
dc.identifierhttp://acervodigital.unesp.br/handle/11449/76813
dc.identifier10.1016/j.physa.2013.09.018
dc.identifierWOS:000328179200013
dc.identifier2-s2.0-84885011561
dc.identifierhttp://dx.doi.org/10.1016/j.physa.2013.09.018
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/897501
dc.descriptionWe consider the non-Markovian Langevin evolution of a dissipative dynamical system in quantum mechanics in the path integral formalism. After discussing the role of the frequency cutoff for the interaction of the system with the heat bath and the kernel and noise correlator that follow from the most common choices, we derive an analytic expansion for the exact non-Markovian dissipation kernel and the corresponding colored noise in the general case that is consistent with the fluctuation-dissipation theorem and incorporates systematically non-local corrections. We illustrate the modifications to results obtained using the traditional (Markovian) Langevin approach in the case of the exponential kernel and analyze the case of the non-Markovian Brownian motion. We present detailed results for the free and the quadratic cases, which can be compared to exact solutions to test the convergence of the method, and discuss potentials of a general nonlinear form. © 2013 Elsevier B.V. All rights reserved.
dc.languageeng
dc.relationPhysica A: Statistical Mechanics and Its Applications
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectBrownian motion
dc.subjectLangevin dynamics
dc.subjectNon-Markovian processes
dc.titleNon-Markovian expansion in quantum Brownian motion
dc.typeOtro


Este ítem pertenece a la siguiente institución