dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorCabrera, Flávio C.
dc.creatorAgostini, Deuber L. S.
dc.creatorDos Santos, Renivaldo J.
dc.creatorTeixeira, Silvio R.
dc.creatorRodríguez-Pérez, Miguel A.
dc.creatorJob, Aldo E.
dc.date2014-05-27T11:30:50Z
dc.date2016-10-25T18:54:51Z
dc.date2014-05-27T11:30:50Z
dc.date2016-10-25T18:54:51Z
dc.date2013-10-05
dc.date.accessioned2017-04-06T02:41:20Z
dc.date.available2017-04-06T02:41:20Z
dc.identifierJournal of Applied Polymer Science, v. 130, n. 1, p. 186-192, 2013.
dc.identifier0021-8995
dc.identifier1097-4628
dc.identifierhttp://hdl.handle.net/11449/76788
dc.identifierhttp://acervodigital.unesp.br/handle/11449/76788
dc.identifier10.1002/app.39153
dc.identifierWOS:000321305500023
dc.identifier2-s2.0-84879907681
dc.identifierhttp://dx.doi.org/10.1002/app.39153
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/897476
dc.descriptionNatural rubber/gold nanoparticles membranes (NR/Au) were studied by ultrasensitive detection and chemical analysis through surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering in our previous work (Cabrera et al., J. Raman Spectrosc. 2012, 43, 474). This article describes the studies of thermal stability and mechanical properties of SERS-active substrate sensors. The composites were prepared using NR membranes obtained by casting the latex solution as an active support (reducing/establishing agents) for the incorporation of colloidal gold nanoparticles (AuNPs). The nanoparticles were synthesized by in situ reduction at different times. The characterization of these sensors was carried out by thermogravimetry, differential scanning calorimetry, scanning electron microscopy (SEM) microscopy, and tensile tests. It is suggested an influence of nanoparticles reduction time on the thermal degradation of NR. There is an increase in thermal stability without changing the chemical properties of the polymer. For the mechanical properties, the tensile rupture was enhanced with the increase in the amount of nanoparticles incorporated in the material. © 2013 Wiley Periodicals, Inc.
dc.languageeng
dc.relationJournal of Applied Polymer Science
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectbiomaterials
dc.subjectelastomers
dc.subjectmechanical properties
dc.subjectnanoparticles
dc.subjectnanowires and nanocrystals
dc.subjectproperties and characterization
dc.subjectActive supports
dc.subjectColloidal gold nanoparticles
dc.subjectNanowires and nanocrystals
dc.subjectSERS-active substrates
dc.subjectSurface enhanced Raman Scattering (SERS)
dc.subjectSurface-enhanced resonance Raman scattering
dc.subjectTensile ruptures
dc.subjectUltrasensitive detection
dc.subjectBiological materials
dc.subjectBiomaterials
dc.subjectCharacterization
dc.subjectDifferential scanning calorimetry
dc.subjectElastomers
dc.subjectMechanical properties
dc.subjectNanoparticles
dc.subjectNanowires
dc.subjectRaman scattering
dc.subjectScanning electron microscopy
dc.subjectSensors
dc.subjectSubstrates
dc.subjectSurface scattering
dc.subjectTensile testing
dc.subjectThermodynamic stability
dc.subjectThermogravimetric analysis
dc.subjectSynthesis (chemical)
dc.titleCharacterization of natural rubber/gold nanoparticles SERS-active substrate
dc.typeOtro


Este ítem pertenece a la siguiente institución