dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorSouza, Rodrigo O.A.
dc.creatorValandro, Luiz F.
dc.creatorMelo, Renata M.
dc.creatorMachado, João P.B.
dc.creatorBottino, Marco A.
dc.creatorÖzcan, Mutlu
dc.date2014-05-27T11:30:46Z
dc.date2016-10-25T18:54:37Z
dc.date2014-05-27T11:30:46Z
dc.date2016-10-25T18:54:37Z
dc.date2013-10-01
dc.date.accessioned2017-04-06T02:40:30Z
dc.date.available2017-04-06T02:40:30Z
dc.identifierJournal of the Mechanical Behavior of Biomedical Materials, v. 26, p. 155-163.
dc.identifier1751-6161
dc.identifier1878-0180
dc.identifierhttp://hdl.handle.net/11449/76712
dc.identifierhttp://acervodigital.unesp.br/handle/11449/76712
dc.identifier10.1016/j.jmbbm.2013.04.018
dc.identifierWOS:000322929900017
dc.identifier2-s2.0-84880040742
dc.identifierhttp://dx.doi.org/10.1016/j.jmbbm.2013.04.018
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/897403
dc.descriptionThis study evaluated the effect of different air-particle abrasion protocols on the biaxial flexural strength and structural stability of zirconia ceramics. Zirconia ceramic specimens (ISO 6872) (Lava, 3M ESPE) were obtained (N=336). The specimens (N=118, n=20 per group) were randomly assigned to one of the air-abrasion protocols: Gr1: Control (as-sintered); Gr2: 50 μm Al2O3 (2.5 bar); Gr3: 50 μm Al2O3 (3.5 bar); Gr4: 110 μm Al2O3(2.5 bar); Gr5: 110 μm Al2O3 (3.5 bar); Gr6: 30 μm SiO2 (2.5 bar) (CoJet); Gr7: 30 μm SiO2(3.5 bar); Gr8: 110 μm SiO2 (2.5 bar) (Rocatec Plus); and Gr9: 110 μm SiO2 (3.5 bar) (duration: 20 s, distance: 10 mm). While half of the specimens were tested immediately, the other half was subjected to cyclic loading in water (100,000 cycles; 50 N, 4 Hz, 37 °°C) prior to biaxial flexural strength test (ISO 6872). Phase transformation (t→m), relative amount of transformed monoclinic zirconia (FM), transformed zone depth (TZD) and surface roughness were measured. Particle type (p=0.2746), pressure (p=0.5084) and cyclic loading (p=0.1610) did not influence the flexural strength. Except for the air-abraded group with 110 μm Al2O3 at 3.5 bar, all air-abrasion protocols increased the biaxial flexural strength (MPa) (Controlnon-aged: 1030±153, Controlaged: 1138±138; Experimentalnon-aged: 1307±184-1554±124; Experimentalaged: 1308±118-1451±135) in both non-aged and aged conditions, respectively. Surface roughness (Ra) was the highest with 110 μm Al2O3(0.84 μm. FM values ranged from 0% to 27.21%, higher value for the Rocatec Plus (110 μm SiO2) and 110 μm Al2O3 groups at 3.5 bar pressure. TZD ranged between 0 and 1.43 μm, with the highest values for Rocatec Plus and 110 μm Al2O3 groups at 3.5 bar pressure. © 2013 Elsevier Ltd.
dc.languageeng
dc.relationJournal of the Mechanical Behavior of Biomedical Materials
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAir-abrasion
dc.subjectBiaxial flexural strength
dc.subjectSilica coating
dc.subjectY-TZP
dc.subjectZirconia
dc.subjectAir abrasion
dc.subjectBi-axial flexural strength
dc.subjectDifferent protocols
dc.subjectMonoclinic zirconia
dc.subjectSilica coatings
dc.subjectStructural stabilities
dc.subjectSurface roughness (Ra)
dc.subjectAbrasion
dc.subjectAluminum
dc.subjectBending strength
dc.subjectCeramic materials
dc.subjectCyclic loads
dc.subjectPhase transitions
dc.subjectSintering
dc.subjectStability
dc.subjectSurface roughness
dc.subjectTribology
dc.subjectbiomedical and dental materials
dc.subjectdental ceramics
dc.subjectwater
dc.subjectzirconium oxide
dc.subjectair particle abrasion
dc.subjectanalytical parameters
dc.subjectbiaxial flexural strength
dc.subjectcontrolled study
dc.subjectloading test
dc.subjectmaterials testing
dc.subjectmechanical stress
dc.subjectparticle size
dc.subjectpressure
dc.subjectpriority journal
dc.subjectRaman spectrometry
dc.subjectscanning electron microscopy
dc.subjectsurface property
dc.subjectX ray diffraction
dc.titleAir-particle abrasion on zirconia ceramic using different protocols: Effects on biaxial flexural strength after cyclic loading, phase transformation and surface topography
dc.typeOtro


Este ítem pertenece a la siguiente institución