dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorCastillo, Kenier
dc.creatorGarza, Lino G.
dc.creatorMarcellán, Francisco
dc.date2014-05-27T11:30:42Z
dc.date2016-10-25T18:54:10Z
dc.date2014-05-27T11:30:42Z
dc.date2016-10-25T18:54:10Z
dc.date2013-09-17
dc.date.accessioned2017-04-06T02:39:04Z
dc.date.available2017-04-06T02:39:04Z
dc.identifierApplied Mathematics and Computation, v. 223, p. 452-460.
dc.identifier0096-3003
dc.identifierhttp://hdl.handle.net/11449/76572
dc.identifierhttp://acervodigital.unesp.br/handle/11449/76572
dc.identifier10.1016/j.amc.2013.08.030
dc.identifierWOS:000326941900041
dc.identifier2-s2.0-84883781978
dc.identifierhttp://dx.doi.org/10.1016/j.amc.2013.08.030
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/897264
dc.descriptionIn this paper, we show how to compute in O(n2) steps the Fourier coefficients associated with the Gelfand-Levitan approach for discrete Sobolev orthogonal polynomials on the unit circle when the support of the discrete component involving derivatives is located outside the closed unit disk. As a consequence, we deduce the outer relative asymptotics of these polynomials in terms of those associated with the original orthogonality measure. Moreover, we show how to recover the discrete part of our Sobolev inner product. © 2013 Elsevier Inc. All rights reserved.
dc.languageeng
dc.relationApplied Mathematics and Computation
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectCholesky decomposition
dc.subjectComputational complexity
dc.subjectDiscrete Sobolev inner product
dc.subjectGelfand-Levitan approach
dc.subjectOuter relative asymptotics
dc.subjectAsymptotics
dc.subjectComputational aspects
dc.subjectDiscrete components
dc.subjectFourier coefficients
dc.subjectSobolev inner products
dc.subjectSobolev orthogonal polynomials
dc.subjectComputational methods
dc.subjectMathematical techniques
dc.subjectFourier analysis
dc.titleOn computational aspects of discrete Sobolev inner products on the unit circle
dc.typeOtro


Este ítem pertenece a la siguiente institución