dc.creatorSantos, Carlos Alberto
dc.creatorSantos, Lais
dc.date2019-03-07T12:30:48Z
dc.date2019-03-07T12:30:48Z
dc.date2018-12
dc.date.accessioned2023-09-27T21:58:34Z
dc.date.available2023-09-27T21:58:34Z
dc.identifier1420-9039
dc.identifierhttps://doi.org/10.1007/s00033-018-1040-8
dc.identifierhttp://www.locus.ufv.br/handle/123456789/23794
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8968900
dc.descriptionIn this paper, we are going to show existence of branches of bifurcation of positive W1,ploc(Ω)Wloc1,p(Ω) -solutions for the very singular non-local λλ -problem −⎛⎝⎜∫Ωg(x,u)dx⎞⎠⎟rΔpu=λ(a(x)u−δ+b(x)uβ) in Ω,u>0 in Ω and u=0 on ∂Ω, −(∫Ωg(x,u)dx)rΔpu=λ(a(x)u−δ+b(x)uβ) in Ω,u>0 in Ω and u=0 on ∂Ω, where Ω⊂RNΩ⊂RN is a smooth bounded domain, δ>0δ>0 , 0<β<p−10<β<p−1 , a and b are nonnegative measurable functions and g is a positive continuous function. Our approach is based on sub- supersolutions techniques, fixed point theory, in the study of W1,ploc(Ω)Wloc1,p(Ω) -topology of a solution application and a new comparison principle for sub-supersolutions in W1,ploc(Ω)Wloc1,p(Ω) to a problem with p-Laplacian operator perturbed by a very singular term at zero and sublinear at infinity.
dc.formatpdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherZeitschrift für angewandte Mathematik und Physik
dc.relationVolume 69, Issue 6, Articles 145, December 2018
dc.rightsSpringer Nature Switzerland AG
dc.subjectVery singular term
dc.subjectUniqueness
dc.subjectNon-local
dc.subjectComparison principle
dc.titleHow to break the uniqueness of W1,ploc(Ω)Wloc1,p(Ω) -solutions for very singular elliptic problems by non-local terms
dc.typeArtigo


Este ítem pertenece a la siguiente institución