dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorMauline, L.
dc.creatorGressier, M.
dc.creatorRoques, C.
dc.creatorHammer, Peter
dc.creatorRibeiro, Sidney José Lima
dc.creatorCaiut, J. M A
dc.creatorMenu, M. J.
dc.date2014-05-27T11:30:05Z
dc.date2016-10-25T18:52:01Z
dc.date2014-05-27T11:30:05Z
dc.date2016-10-25T18:52:01Z
dc.date2013-08-01
dc.date.accessioned2017-04-06T02:33:27Z
dc.date.available2017-04-06T02:33:27Z
dc.identifierBiofouling, v. 29, n. 7, p. 775-788, 2013.
dc.identifier0892-7014
dc.identifier1029-2454
dc.identifierhttp://hdl.handle.net/11449/76147
dc.identifierhttp://acervodigital.unesp.br/handle/11449/76147
dc.identifier10.1080/08927014.2013.798866
dc.identifierWOS:000321828200003
dc.identifier2-s2.0-84880508754
dc.identifierhttp://dx.doi.org/10.1080/08927014.2013.798866
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/896856
dc.descriptionLuminescent silica nanoparticles are frequently employed for biotechnology applications mainly because of their easy functionalization, photo-stability, and biocompatibility. Bifunctional silica nanoparticles (BSNPs) are described here as new efficient tools for investigating complex biological systems such as biofilms. Photoluminescence is brought about by the incorporation of a silylated ruthenium(II) complex. The surface properties of the silica particles were designed by reaction with amino-organosilanes, quaternary ammonium-organosilanes, carboxylate-organosilanes and hexamethyldisilazane. BSNPs were characterized extensively by DRIFT, 13C and 29Si solid state NMR, XPS, and photoluminescence. Zeta potential and contact angle measurements exhibited various surface properties (hydrophilic/hydrophobic balance and electric charge) according to the functional groups. Confocal laser scanning microscopy (CLSM) measurements showed that the spatial distribution of these nanoparticles inside a biofilm of Pseudomonas aeruginosa PAO1 depends more on their hydrophilic/hydrophobic characteristics than on their size. CLSM observations using two nanosized particles (25 and 68 nm) suggest that narrow diffusion paths exist through the extracellular polymeric substances matrix. © 2013 Copyright Taylor and Francis Group, LLC.
dc.languageeng
dc.relationBiofouling
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectbifunctional silica nanoparticles
dc.subjectP. aeruginosa (PAO1) biofilms
dc.subjectphotoluminescence
dc.subjectsurface modification
dc.subjectbiofilm
dc.subjectbiotechnology
dc.subjectdiffusion
dc.subjectfunctional group
dc.subjectluminescence
dc.subjectmicrobial community
dc.subjectmicroscopy
dc.subjectnanotechnology
dc.subjectparticle size
dc.subjectpolymer
dc.subjectreaction kinetics
dc.subjectruthenium
dc.subjectsilica
dc.subjectPseudomonas aeruginosa
dc.titleBifunctional silica nanoparticles for the exploration of biofilms of Pseudomonas aeruginosa
dc.typeOtro


Este ítem pertenece a la siguiente institución