dc.creatorFranco, Daniel H. T.
dc.date2018-10-10T16:29:36Z
dc.date2018-10-10T16:29:36Z
dc.date2014-05-07
dc.date.accessioned2023-09-27T21:50:58Z
dc.date.available2023-09-27T21:50:58Z
dc.identifier15729656
dc.identifierhttp://dx.doi.org/10.1007/s11040-014-9146-5
dc.identifierhttp://www.locus.ufv.br/handle/123456789/22231
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8967046
dc.descriptionRecently, Hořava (Phys. Rev. D. 79, 084008, 2009) proposed a theory of gravity in 3+1 dimensions with anisotropic scaling using the traditional framework of quantum field theory (QFT). Such an anisotropic theory of gravity, characterized by a dynamical critical exponent z, has proven to be power-counting renormalizable at a z=3 Lifshitz Point. In the present article, we develop a mathematically precise version of power-counting theorem in Lorentz violating theories and apply this to the Hořava-Lifshitz (scalar field) models in configuration space. The analysis is performed under the light of the systematic use of the concept of extension of homogeneous distributions, a concept tailor-made to address the problem of the ultraviolet renormalization in QFT. This becomes particularly transparent in a Lifshitz-type QFT. In the specific case of the ϕ44-theory, we show that is sufficient to take z=3 in order to reach the ultraviolet finiteness of the S-matrix in all orders.
dc.formatpdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherMathematical Physics, Analysis and Geometry
dc.relationv. 17, n. 1– 2, p. 139– 150, jun. 2014
dc.rightsSpringer Nature Switzerland AG.
dc.subjectLifshitz-type theory
dc.subjectRenormalization
dc.subjectHomogeneous distributions
dc.titleOn the power-counting renormalizability of a Lifshitz-type QFT in configuration space
dc.typeArtigo


Este ítem pertenece a la siguiente institución