dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorMoala, Fernando A.
dc.creatorGarcia, Lívia M.
dc.date2014-05-27T11:29:49Z
dc.date2016-10-25T18:50:22Z
dc.date2014-05-27T11:29:49Z
dc.date2016-10-25T18:50:22Z
dc.date2013-07-01
dc.date.accessioned2017-04-06T02:28:50Z
dc.date.available2017-04-06T02:28:50Z
dc.identifierQuality Engineering, v. 25, n. 3, p. 282-291, 2013.
dc.identifier0898-2112
dc.identifier1532-4222
dc.identifierhttp://hdl.handle.net/11449/75788
dc.identifierhttp://acervodigital.unesp.br/handle/11449/75788
dc.identifier10.1080/08982112.2013.764431
dc.identifierWOS:000320223400008
dc.identifier2-s2.0-84879121469
dc.identifierhttp://dx.doi.org/10.1080/08982112.2013.764431
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/896520
dc.descriptionThe exponential-logarithmic is a new lifetime distribution with decreasing failure rate and interesting applications in the biological and engineering sciences. Thus, a Bayesian analysis of the parameters would be desirable. Bayesian estimation requires the selection of prior distributions for all parameters of the model. In this case, researchers usually seek to choose a prior that has little information on the parameters, allowing the data to be very informative relative to the prior information. Assuming some noninformative prior distributions, we present a Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. Jeffreys prior is derived for the parameters of exponential-logarithmic distribution and compared with other common priors such as beta, gamma, and uniform distributions. In this article, we show through a simulation study that the maximum likelihood estimate may not exist except under restrictive conditions. In addition, the posterior density is sometimes bimodal when an improper prior density is used. © 2013 Copyright Taylor and Francis Group, LLC.
dc.languageeng
dc.relationQuality Engineering
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectBayesian
dc.subjectexponential-logarithmic distribution
dc.subjectJeffreys
dc.subjectMCMC
dc.subjectnoninformative prior
dc.subjectposterior
dc.subjectNon-informative prior
dc.subjectMaximum likelihood estimation
dc.subjectBayesian networks
dc.titleA bayesian analysis for the parameters of the exponential-logarithmic distribution
dc.typeOtro


Este ítem pertenece a la siguiente institución