dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorDelbrücke, Tiago
dc.creatorGouvêa, Rogério A.
dc.creatorMoreira, Mário L.
dc.creatorRaubach, Cristiane W.
dc.creatorVarela, José Arana
dc.creatorLongo, Elson
dc.creatorGonçalves, Margarete R.F.
dc.creatorCava, Sergio
dc.date2014-05-27T11:29:35Z
dc.date2016-10-25T18:48:56Z
dc.date2014-05-27T11:29:35Z
dc.date2016-10-25T18:48:56Z
dc.date2013-06-01
dc.date.accessioned2017-04-06T02:25:11Z
dc.date.available2017-04-06T02:25:11Z
dc.identifierJournal of the European Ceramic Society, v. 33, n. 6, p. 1087-1092, 2013.
dc.identifier0955-2219
dc.identifierhttp://hdl.handle.net/11449/75517
dc.identifierhttp://acervodigital.unesp.br/handle/11449/75517
dc.identifier10.1016/j.jeurceramsoc.2012.11.009
dc.identifierWOS:000315313900004
dc.identifier2-s2.0-84873077617
dc.identifierhttp://dx.doi.org/10.1016/j.jeurceramsoc.2012.11.009
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/896260
dc.descriptionIn this research report, a sintering process of porous ceramic materials based on Al2O3 was employed using a method where a cation precursor solution is embedded in an organic fibrous cotton matrix. For porous green bodies, the precursor solution and cotton were annealed at temperatures in the range of 100-1600°C using scanning electron microscopy (SEM) and thermogravimetric (TG) analysis to obtain a porous body formation and disposal process containing organic fibers and precursor solution. In a structure consisting of open pores and interconnected nanometric grains, despite the low porosity of around 40% (calculated geometrically), nitrogen physisorption determined a specific surface area of 14m2/g, which shows much sintering of porous bodies. Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analytical methods revealed a predominant amount of α-Al2O3 in the sintered samples. Thermal properties of the sintered Al2O3 fibers were obtained by using the Laser Flash which resulted in the lower thermal conductivity obtained by α-Al2O3 and therefore improved its potential use as an insulating material. © 2012 Elsevier Ltd.
dc.languageeng
dc.relationJournal of the European Ceramic Society
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAl2O3
dc.subjectChemically synthesized
dc.subjectReplica method in organic matrix
dc.subjectSintered porous body
dc.subjectThermal properties
dc.subjectAnalytical method
dc.subjectDisposal process
dc.subjectEnergy dispersive x-ray
dc.subjectGreen body
dc.subjectLaser flash
dc.subjectLow porosity
dc.subjectLow thermal conductivity
dc.subjectNanometrics
dc.subjectOrganic fibers
dc.subjectOrganic matrix
dc.subjectPorous alumina
dc.subjectPorous bodies
dc.subjectPorous ceramic materials
dc.subjectPrecursor solutions
dc.subjectResearch reports
dc.subjectSintered samples
dc.subjectSintering process
dc.subjectThermogravimetric
dc.subjectAluminum
dc.subjectCotton
dc.subjectPhysisorption
dc.subjectScanning electron microscopy
dc.subjectThermal conductivity
dc.subjectThermodynamic properties
dc.subjectThermogravimetric analysis
dc.subjectX ray diffraction
dc.subjectSintering
dc.subjectGravimetry
dc.subjectScanning Electron Microscopy
dc.subjectThermal Analysis
dc.subjectThermal Conductivity
dc.subjectThermal Properties
dc.subjectX Ray Diffraction
dc.titleSintering of porous alumina obtained by biotemplate fibers for low thermal conductivity applications
dc.typeOtro


Este ítem pertenece a la siguiente institución