dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorZeidán-Chuliá, Fares
dc.creatorRybarczyk-Filho, José Luiz
dc.creatorSalmina, Alla B.
dc.creatorDe Oliveira, Ben-Hur Neves
dc.creatorNoda, Mami
dc.creatorMoreira, José Cláudio F.
dc.date2014-05-27T11:29:34Z
dc.date2016-10-25T18:48:53Z
dc.date2014-05-27T11:29:34Z
dc.date2016-10-25T18:48:53Z
dc.date2013-06-01
dc.date.accessioned2017-04-06T02:24:57Z
dc.date.available2017-04-06T02:24:57Z
dc.identifierNeuroMolecular Medicine, v. 15, n. 2, p. 364-383, 2013.
dc.identifier1535-1084
dc.identifier1559-1174
dc.identifierhttp://hdl.handle.net/11449/75494
dc.identifierhttp://acervodigital.unesp.br/handle/11449/75494
dc.identifier10.1007/s12017-013-8224-3
dc.identifierWOS:000318844500012
dc.identifier2-s2.0-84877771585
dc.identifierhttp://dx.doi.org/10.1007/s12017-013-8224-3
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/896238
dc.descriptionAutism is a neurodevelopmental disorder characterized by impaired social interaction and communication accompanied with repetitive behavioral patterns and unusual stereotyped interests. Autism is considered a highly heterogeneous disorder with diverse putative causes and associated factors giving rise to variable ranges of symptomatology. Incidence seems to be increasing with time, while the underlying pathophysiological mechanisms remain virtually uncharacterized (or unknown). By systematic review of the literature and a systems biology approach, our aims were to examine the multifactorial nature of autism with its broad range of severity, to ascertain the predominant biological processes, cellular components, and molecular functions integral to the disorder, and finally, to elucidate the most central contributions (genetic and/or environmental) in silico. With this goal, we developed an integrative network model for gene-environment interactions (GENVI model) where calcium (Ca2+) was shown to be its most relevant node. Moreover, considering the present data from our systems biology approach together with the results from the differential gene expression analysis of cerebellar samples from autistic patients, we believe that RAC1, in particular, and the RHO family of GTPases, in general, could play a critical role in the neuropathological events associated with autism. © 2013 Springer Science+Business Media New York.
dc.languageeng
dc.relationNeuroMolecular Medicine
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAutism spectrum disorders
dc.subjectGene expression
dc.subjectIn silico model
dc.subjectPolymorphism
dc.subjectXenobiotic
dc.subjectcalcium
dc.subjectprotein Cdc42
dc.subjectRac protein
dc.subjectRac1 protein
dc.subjectRhoA guanine nucleotide binding protein
dc.subjectactin filament
dc.subjectautism
dc.subjectcalcium signaling
dc.subjectcerebellum
dc.subjectenvironmental stress
dc.subjectgene expression
dc.subjectgenetic susceptibility
dc.subjectgenotype environment interaction
dc.subjecthuman
dc.subjectmacroglia
dc.subjectmicroarray analysis
dc.subjectnerve cell plasticity
dc.subjectpriority journal
dc.subjectreview
dc.subjectsystematic review
dc.subjectsystems biology
dc.titleExploring the multifactorial nature of autism through computational systems biology: Calcium and the Rho GTPase RAC1 under the spotlight
dc.typeOtro


Este ítem pertenece a la siguiente institución