dc.creator | Miyagaki, Olimpio H. | |
dc.creator | Carvalho, Janete S. | |
dc.creator | Maia, Liliane A. | |
dc.date | 2018-08-29T11:12:26Z | |
dc.date | 2018-08-29T11:12:26Z | |
dc.date | 2010-03-24 | |
dc.date.accessioned | 2023-09-27T21:26:44Z | |
dc.date.available | 2023-09-27T21:26:44Z | |
dc.identifier | 14209039 | |
dc.identifier | http://dx.doi.org/10.1007/s00033-010-0070-7 | |
dc.identifier | http://www.locus.ufv.br/handle/123456789/21498 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8960729 | |
dc.description | We consider the nonlinear Schrödinger equation −△u+V(x)u=f(u)inℝN. We assume that V is invariant under an orthogonal involution and show the existence of a particular type of sign changing solution. The basic tool employed here is the Concentration–Compactness Principle. | |
dc.format | pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Zeitschrift für angewandte Mathematik und Physik | |
dc.relation | v. 62, n. 1, p. 67– 86, fev. 2011 | |
dc.rights | Springer Nature Switzerland AG. | |
dc.subject | Nonlinear Schrödinger equation | |
dc.subject | Concentration–Compactnessprinciple | |
dc.title | A note on existence of antisymmetric solutions for a class of nonlinear Schrödinger equations | |
dc.type | Artigo | |