dc.creatorAlves, M. S.
dc.creatorSilva, M. A. Jorge
dc.creatorMa, T. F.
dc.creatorRivera, J. E. Muñoz
dc.date2018-09-27T01:10:48Z
dc.date2018-09-27T01:10:48Z
dc.date2017-09
dc.date.accessioned2023-09-27T21:17:21Z
dc.date.available2023-09-27T21:17:21Z
dc.identifier1678-7714
dc.identifierhttps://doi.org/10.1007/s00574-017-0030-3
dc.identifierhttp://www.locus.ufv.br/handle/123456789/22045
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8958036
dc.descriptionThe well-established Timoshenko system is characterized by a particular relation between shear stress and bending moment from its constitutive equations. Accordingly, a (thermal) dissipation added on the bending moment produces exponential stability if and only if the so called “equal wave speeds” condition is satisfied. This remarkable property extends to the case of non-homogeneous coefficients. In this paper, we consider a non-homogeneous thermoelastic system with dissipation restricted to the shear stress. To this new problem, by means of a delicate control observability analysis, we prove that a local version of the equal wave speeds condition is sufficient for the exponential stability of the system. Otherwise, we study the polynomial stability of the system with decay rate depending on the regularity of initial data.
dc.formatpdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherBulletin of the Brazilian Mathematical Society, New Series
dc.relationVolume 48, Issue 3, p. 461–484, September 2017
dc.rightsSpringer Berlin Heidelberg
dc.subjectTimoshenko systems
dc.subjectThermoelasticity
dc.subjectNon-homogeneous coefficients
dc.subjectExponential stability
dc.subjectPolynomial stability
dc.titleNon-Homogeneous Thermoelastic Timoshenko Systems
dc.typeArtigo


Este ítem pertenece a la siguiente institución