dc.creatorPereira, A. R.
dc.creatorPires, A. S. T.
dc.creatorMoura, A. R.
dc.date2019-01-25T12:17:59Z
dc.date2019-01-25T12:17:59Z
dc.date2014-05
dc.date.accessioned2023-09-27T21:14:41Z
dc.date.available2023-09-27T21:14:41Z
dc.identifier0304-8853
dc.identifierhttps://doi.org/10.1016/j.jmmm.2014.01.006
dc.identifierhttp://www.locus.ufv.br/handle/123456789/23187
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8957236
dc.descriptionIn this paper we study the influence of the single-ion anisotropy in the two-dimensional biquadratic Heisenberg model (ABHM) on the square lattice at zero and finite low temperatures. It is common to represent the bilinear and biquadratic terms by J 1 1⁄4 J cos θ and J 2 1⁄4 J sin θ , respectively, and the many phases present in the model as a function of θ are well documented. However we have adopted a constant value for the bilinear constant (J 1 1⁄4 1) and small values of the biquadratic term (jJ 2 j o J 1 ). Specially, we have analyzed the quantum phase transition due to the single-ion anisotropic constant D. For values below a critical anisotropic constant D c the energy spectrum is gapless and at low finite temperatures the order parameter correlation has an algebraic decay (quasi-long-range order). Moreover, in D o D c phase there is a transition temperature where the quasi-long-range order (algebraic decay) is lost and the decay becomes exponential, similar to the Berezinski–Kosterlitz–Thouless (BKT) transition. For D 4 D c , the excited states are gapped and there is no spin long-range order (LRO) even at zero temperature. Using Schwinger bosonic representation and Self-Consistent Harmonic Approximation (SCHA), we have studied the quantum and thermal phase transitions as a function of the bilinear and biquadratic constants.
dc.formatpdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherJournal of Magnetism and Magnetic Materials
dc.relationVolume 357, Pages 45- 52, May 2014
dc.rights2014 Elsevier B.V. All rights reserved.
dc.subjectAnisotropic Biquadratic Heisenberg Model
dc.subjectPhase transition
dc.subjectSchwinger boson
dc.subjectSCHA
dc.titlePhase transitions in the two-dimensional anisotropic biquadratic Heisenberg model
dc.typeArtigo


Este ítem pertenece a la siguiente institución