dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorPineiz, Tatiane F.
dc.creatorDe Morais, Evandro A.
dc.creatorScalvi, Luis V.A.
dc.creatorBueno, Cristina F.
dc.date2014-05-27T11:28:27Z
dc.date2016-10-25T18:44:32Z
dc.date2014-05-27T11:28:27Z
dc.date2016-10-25T18:44:32Z
dc.date2013-02-15
dc.date.accessioned2017-04-06T02:13:39Z
dc.date.available2017-04-06T02:13:39Z
dc.identifierApplied Surface Science, v. 267, p. 200-205.
dc.identifier0169-4332
dc.identifierhttp://hdl.handle.net/11449/74595
dc.identifierhttp://acervodigital.unesp.br/handle/11449/74595
dc.identifier10.1016/j.apsusc.2012.10.097
dc.identifierWOS:000314881900048
dc.identifier2-s2.0-84873718152
dc.identifierhttp://dx.doi.org/10.1016/j.apsusc.2012.10.097
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/895356
dc.descriptionThin films of tin dioxide (SnO2) are deposited by the sol-gel-dip-coating technique, along with GaAs layers, deposited by the resistive evaporation technique. The as-built heterojunction has potential application in optoelectronic devices, combining the emission from the rare-earth doped transparent oxide (Eu3+-doped SnO2 presents very efficient red emission) with a high mobility semiconductor. The advantage of this structure is the possibility of separation of the rare-earth emission centers from the electron scattering, leading to a strongly indicated combination for electroluminescence. Electrical characterization of the heterojunction SnO2:Eu/GaAs shows a significant conductivity increase when compared to the conductivity of the individual films, and the monochromatic light irradiation (266 nm) at low temperature of the heterojunction GaAs/SnO2:Eu leads to intense conductivity increase. Scanning electron microscopy (SEM) of the heterojunction cross section shows high adherence and good morphological quality of the interfaces substrate/SnO2 and SnO2/GaAs, even though the atomic force microscopy (AFM) image of the GaAs surface shows disordered particles, which increases with sample thickness. On the other hand, the good morphology of the SnO2:Eu surface, shown by AFM, assures the good electrical performance of the heterojunction. The observed improvement on the electrical transport properties is probably related to the formation of short conduction channels at the semiconductors interface, which may exhibit two-dimensional electron gas (2DEG) behavior. © 2012 Elsevier B.V. All rights reserved.
dc.languageeng
dc.relationApplied Surface Science
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectElectrical conductivity
dc.subjectGallium arsenide
dc.subjectHeterojunction
dc.subjectInterface
dc.subjectTin dioxide
dc.subjectAFM
dc.subjectConduction channel
dc.subjectElectrical characterization
dc.subjectElectrical performance
dc.subjectElectrical transport properties
dc.subjectElectronic transport properties
dc.subjectGaAs
dc.subjectGaAs surfaces
dc.subjectHigh-mobility semiconductors
dc.subjectInterface formation
dc.subjectLow temperatures
dc.subjectMonochromatic light
dc.subjectNano-structured
dc.subjectPotential applications
dc.subjectRare earth doped
dc.subjectRare-earth emission
dc.subjectRed emissions
dc.subjectSample thickness
dc.subjectTransparent oxides
dc.subjectTwo-dimensional electron gas (2DEG)
dc.subjectAtomic force microscopy
dc.subjectDeposits
dc.subjectElectric conductivity
dc.subjectElectron gas
dc.subjectEuropium
dc.subjectInterfaces (materials)
dc.subjectOptoelectronic devices
dc.subjectResistive evaporation
dc.subjectScanning electron microscopy
dc.subjectSemiconducting gallium
dc.subjectSol-gels
dc.subjectTin
dc.subjectTransport properties
dc.subjectHeterojunctions
dc.titleInterface formation of nanostructured heterojunction SnO 2:Eu/GaAs and electronic transport properties
dc.typeOtro


Este ítem pertenece a la siguiente institución