dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorFloriano, E. A.
dc.creatorScalvi, Luis Vicente de Andrade
dc.creatorSambrano, Julio Ricardo
dc.creatorDe Andrade, A.
dc.date2014-05-27T11:28:27Z
dc.date2016-10-25T18:44:32Z
dc.date2014-05-27T11:28:27Z
dc.date2016-10-25T18:44:32Z
dc.date2013-02-15
dc.date.accessioned2017-04-06T02:13:39Z
dc.date.available2017-04-06T02:13:39Z
dc.identifierApplied Surface Science, v. 267, p. 164-168.
dc.identifier0169-4332
dc.identifierhttp://hdl.handle.net/11449/74594
dc.identifierhttp://acervodigital.unesp.br/handle/11449/74594
dc.identifier10.1016/j.apsusc.2012.09.003
dc.identifierWOS:000314881900039
dc.identifier2-s2.0-84873709464
dc.identifierhttp://dx.doi.org/10.1016/j.apsusc.2012.09.003
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/895355
dc.descriptionDoping tin dioxide (SnO2) with pentavalent Sb5+ ions leads to an enhancement in the electrical conductivity of this material, because Sb5+ substitutes Sn4+ in the matrix, promoting an electronic density increase in the conduction band, due to the donor-like nature of the doping atom. Results of computational simulation, based on the Density Functional Theory (DFT), of SnO2:4%Sb and SnO2:8%Sb show that the bandgap magnitude is strongly affected by the doping concentration, because the energy value found for 4 at%Sb and 8 at%Sb was 3.27 eV and 3.13 eV, respectively, whereas the well known value for undoped SnO2 is about 3.6 eV. Sb-doped SnO2 thin films were obtained by the sol-gel-dip-coating technique. The samples were submitted to excitation with below theoretical bandgap light (450 nm), as well as above bandgap light (266 nm) at low temperature, and a temperature-dependent increase in the conductivity is observed. Besides, an unusual temperature and time dependent decay when the illumination is removed is also observed, where the decay time is slower for higher temperatures. This decay is modeled by considering thermally activated cross section of trapping centers, and the hypothesis of grain boundary scattering as the dominant mechanism for electronic mobility. © 2012 Elsevier B.V. All rights reserved.
dc.languageeng
dc.relationApplied Surface Science
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectElectrical conductivity
dc.subjectElectronic structure
dc.subjectSol-gel
dc.subjectThin films
dc.subjectTin dioxide
dc.subjectBand gap energy
dc.subjectComputational simulation
dc.subjectDecay time
dc.subjectDensity functional theories (DFT)
dc.subjectDominant mechanism
dc.subjectDoping atoms
dc.subjectDoping concentration
dc.subjectElectronic density
dc.subjectElectronic mobility
dc.subjectEnergy value
dc.subjectGrain boundary scattering
dc.subjectLow temperatures
dc.subjectMonochromatic light
dc.subjectPhoto-induced
dc.subjectSb-doped SnO
dc.subjectTemperature dependent
dc.subjectThermally activated
dc.subjectTime-dependent decay
dc.subjectTrapping centers
dc.subjectDensity functional theory
dc.subjectElectric conductivity
dc.subjectEnergy gap
dc.subjectGrain boundaries
dc.subjectSol-gel process
dc.subjectSol-gels
dc.subjectTin
dc.titleDecay of photo-induced conductivity in Sb-doped SnO2 thin films, using monochromatic light of about bandgap energy
dc.typeOtro


Este ítem pertenece a la siguiente institución