dc.creatorApolonio, Felipe A.
dc.creatorFranco, Daniel H. T.
dc.creatorFagundes, Fábio N.
dc.date2018-02-07T17:48:39Z
dc.date2018-02-07T17:48:39Z
dc.date2012-04-19
dc.date.accessioned2023-09-27T20:57:41Z
dc.date.available2023-09-27T20:57:41Z
dc.identifier1687-0425
dc.identifierhttp://dx.doi.org/10.1155/2012/758694
dc.identifierhttp://www.locus.ufv.br/handle/123456789/17483
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8951719
dc.descriptionBy using a particular class of directional wavelets (namely, the conical wavelets, which are wavelets strictly supported in a proper convex cone in the -space of frequencies), in this paper, it is shown that a tempered distribution is obtained as a finite sum of boundary values of analytic functions arising from the complexification of the translational parameter of the wavelet transform. Moreover, we show that for a given distribution , the continuous wavelet transform of with respect to a conical wavelet is defined in such a way that the directional wavelet transform of yields a function on phase space whose high-frequency singularities are precisely the elements in the analytic wavefront set of .
dc.formatpdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherInternational Journal of Mathematics and Mathematical Sciences
dc.relationVolume 2012, Article ID 758694, 2012
dc.rightsOpen Access
dc.subjectDirectional wavelet transform
dc.subjectDistributional boundary values
dc.subjectWavefront Sets
dc.titleA note on directional wavelet transform: distributional boundary values and analytic wavefront sets
dc.typeArtigo


Este ítem pertenece a la siguiente institución