dc.creatorMiyagaki, O. H.
dc.creatorMiotto, M. L.
dc.date2018-10-25T10:50:42Z
dc.date2018-10-25T10:50:42Z
dc.date2009-10-01
dc.date.accessioned2023-09-27T20:55:10Z
dc.date.available2023-09-27T20:55:10Z
dc.identifier0362546X
dc.identifierhttps://doi.org/10.1016/j.na.2009.02.010
dc.identifierhttp://www.locus.ufv.br/handle/123456789/22396
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8950842
dc.descriptionIn this paper, existence and multiplicity results to the following Dirichlet problem −∆u + u = λf (x)|u|q−1 + h(x)|u|p−1 , u > 0, u = 0, in Ω in Ω on ∂ Ω are established, where Ω = Ω × R, Ω ⊂ RN −1 is bounded smooth domain and N ≥ 2. Here 1 < q < 2 < p < 2∗ 2∗ = N2N2 if N ≥ 3, 2∗ = ∞ if N = 2 , λ is a positive real − parameter, the function f , among other conditions, can possibly change sign in Ω , and the function h satisfies suitable conditions. The study is based on the comparison of energy levels on Nehari manifold.
dc.formatpdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherNonlinear Analysis: Theory, Methods & Applications
dc.relationv. 71, n. 7– 8, p. 3434- 3447, out. 2009
dc.rightsElsevier Ltd.
dc.subjectMultiple positive solutions
dc.subjectConcave–convex nonlinearities
dc.subjectNehari manifold
dc.subjectSign-changing weight functions
dc.titleMultiple positive solutions for semilinear Dirichlet problems with sign-changing weight function in infinite strip domains
dc.typeArtigo


Este ítem pertenece a la siguiente institución