dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorLlibre, Jaume
dc.creatorRoberto, Luci Any
dc.date2014-05-27T11:27:32Z
dc.date2016-10-25T18:41:38Z
dc.date2014-05-27T11:27:32Z
dc.date2016-10-25T18:41:38Z
dc.date2013-01-01
dc.date.accessioned2017-04-06T02:08:18Z
dc.date.available2017-04-06T02:08:18Z
dc.identifierDiscrete and Continuous Dynamical Systems- Series A, v. 33, n. 1, p. 277-282, 2013.
dc.identifier1078-0947
dc.identifier1553-5231
dc.identifierhttp://hdl.handle.net/11449/74291
dc.identifierhttp://acervodigital.unesp.br/handle/11449/74291
dc.identifier10.3934/dcds.2013.33.277
dc.identifierWOS:000309286500019
dc.identifier2-s2.0-84867031466
dc.identifierhttp://dx.doi.org/10.3934/dcds.2013.33.277
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/895059
dc.descriptionIn this work we study the periodic solutions, their stability and bifurcation for the class of Duffing differential equation mathematical equation represented where C > 0, ε > 0 and Λ are real parameter, A(t), b(t) and h(t) are continuous T periodic functions and ε is sufficiently small. Our results are proved using the averaging method of first order.
dc.languageeng
dc.relationDiscrete and Continuous Dynamical Systems- Series A
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAveraging method
dc.subjectBifurcation
dc.subjectDuffing differential equation
dc.subjectPeriodic solution
dc.subjectStability
dc.titleOn the periodic solutions of a class of duffing differential equations
dc.typeOtro


Este ítem pertenece a la siguiente institución