dc.creatorSantos, V.S.
dc.creatorMartins Filho, S.
dc.creatorResende, M.D.V.
dc.creatorAzevedo, C.F.
dc.creatorLopes, P.S.
dc.creatorGuimarães, S.E.F.
dc.creatorSilva, F.F.
dc.date2017-11-06T16:44:51Z
dc.date2017-11-06T16:44:51Z
dc.date2016-10-17
dc.date.accessioned2023-09-27T20:49:53Z
dc.date.available2023-09-27T20:49:53Z
dc.identifier16765680
dc.identifierhttp://dx.doi.org/10.4238/gmr15048764
dc.identifierhttp://www.locus.ufv.br/handle/123456789/12766
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8948916
dc.descriptionNúmero de páginas não informado.
dc.descriptionAge at the time of slaughter is a commonly used trait in animal breeding programs. Since studying this trait involves incomplete observations (censoring), analysis can be performed using survival models or modified linear models, for example, by sampling censored data from truncated normal distributions. For genomic selection, the greatest genetic gains can be achieved by including non-additive genetic effects like dominance. Thus, censored traits with effects on both survival models have not yet been studied under a genomic selection approach. We aimed to predict genomic values using the Cox model with dominance effects and compare these results with the linear model with and without censoring. Linear models were fitted via the maximum likelihood method. For censored data, sampling through the truncated normal distribution was used, and the model was called the truncated normal linear via Gibbs sampling (TNL). We used an F2 pig population; the response variable was time (days) from birth to slaughter. Data were previously adjusted for fixed effects of sex and contemporary group. The model predictive ability was calculated based on correlation of predicted genomic values with adjusted phenotypic values. The results showed that both with and without censoring, there was high agreement between Cox and linear models in selection of individuals and markers. Despite including the dominance effect, there was no increase in predictive ability. This study showed, for the first time, the possibility of performing genomic prediction of traits with censored records while using the Cox survival model with additive and dominance effects.
dc.formatpdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherGenetics and Molecular Research
dc.relation15 (4): gmr15048764, October 2016
dc.rightsOpen Access
dc.subjectGBLUP
dc.subjectCensored data
dc.subjectMixed model
dc.subjectSurvival models
dc.titleGenomic prediction for additive and dominance effects of censored traits in pigs
dc.typeArtigo


Este ítem pertenece a la siguiente institución