dc.creatorBelo, L. R. A.
dc.creatorOliveira Neto, N. M.
dc.creatorMoura Melo, W. A.
dc.creatorPereira, A. R.
dc.creatorErcolessi, Elisa
dc.date2018-10-16T10:45:21Z
dc.date2018-10-16T10:45:21Z
dc.date2007-06-11
dc.date.accessioned2023-09-27T20:48:57Z
dc.date.available2023-09-27T20:48:57Z
dc.identifier0375-9601
dc.identifierhttps://doi.org/10.1016/j.physleta.2007.01.044
dc.identifierhttp://www.locus.ufv.br/handle/123456789/22255
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8948588
dc.descriptionHeisenberg-like spins lying on the pseudosphere (a 2-dimensional infinite space with constant negative curvature) cannot give rise to stable soliton solutions. Only fractional solutions can be stabilized on this surface provided that at least a hole is incorporated. We also address the issue of ‘in-plane’ vortices, in the XY regime. Interestingly, the energy of a single vortex no longer blows up as the excitation spreads to infinity. This yields a non-confining potential between a vortex and an antivortex at large distances so that the pair may dissociate at arbitrarily low temperature.
dc.formatpdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherPhysics Letters A
dc.relationVolume 365, Issues 5–6, Pages 463-468, June 2007
dc.rightsElsevier B. V.
dc.subjectHeisenberg model
dc.subjectNegative curvature
dc.subjectTopological spin
dc.titleHeisenberg model on a space with negative curvature: Topological spin textures on the pseudosphere
dc.typeArtigo


Este ítem pertenece a la siguiente institución