dc.creator | Belo, L. R. A. | |
dc.creator | Oliveira Neto, N. M. | |
dc.creator | Moura Melo, W. A. | |
dc.creator | Pereira, A. R. | |
dc.creator | Ercolessi, Elisa | |
dc.date | 2018-10-16T10:45:21Z | |
dc.date | 2018-10-16T10:45:21Z | |
dc.date | 2007-06-11 | |
dc.date.accessioned | 2023-09-27T20:48:57Z | |
dc.date.available | 2023-09-27T20:48:57Z | |
dc.identifier | 0375-9601 | |
dc.identifier | https://doi.org/10.1016/j.physleta.2007.01.044 | |
dc.identifier | http://www.locus.ufv.br/handle/123456789/22255 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8948588 | |
dc.description | Heisenberg-like spins lying on the pseudosphere (a 2-dimensional infinite space with constant negative curvature) cannot give rise to stable soliton solutions. Only fractional solutions can be stabilized on this surface provided that at least a hole is incorporated. We also address the issue of ‘in-plane’ vortices, in the XY regime. Interestingly, the energy of a single vortex no longer blows up as the excitation spreads to infinity. This yields a non-confining potential between a vortex and an antivortex at large distances so that the pair may dissociate at arbitrarily low temperature. | |
dc.format | pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Physics Letters A | |
dc.relation | Volume 365, Issues 5–6, Pages 463-468, June 2007 | |
dc.rights | Elsevier B. V. | |
dc.subject | Heisenberg model | |
dc.subject | Negative curvature | |
dc.subject | Topological spin | |
dc.title | Heisenberg model on a space with negative curvature: Topological spin textures on the pseudosphere | |
dc.type | Artigo | |