dc.creatorAraujo, Anderson L.A. de
dc.creatorMagalhães, Paulo Marcelo Dias De
dc.date2018-10-01T11:48:14Z
dc.date2018-10-01T11:48:14Z
dc.date2015-01-01
dc.date.accessioned2023-09-27T20:48:40Z
dc.date.available2023-09-27T20:48:40Z
dc.identifier0022-247X
dc.identifierhttps://doi.org/10.1016/j.jmaa.2014.07.038
dc.identifierhttp://www.locus.ufv.br/handle/123456789/22083
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8948466
dc.descriptionIn this paper we study the distributed optimal control problem for the two-dimensional mathematical model of cancer invasion. Existence of optimal state-control and stability is proved and an optimality system is derived.
dc.formatpdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherJournal of Mathematical Analysis and Applications
dc.relationVolume 421, Issue 1, Pages 842-877, January 2015
dc.rightsElsevier B. V.
dc.subjectFixed point theorem
dc.subjectOptimal control
dc.subjectTumour invasion of tissue
dc.titleExistence of solutions and optimal control for a model of tissue invasion by solid tumours
dc.typeArtigo


Este ítem pertenece a la siguiente institución