dc.creatorCezana Jr., Miguel
dc.creatorTenenblat, Keti
dc.date2018-09-04T11:47:23Z
dc.date2018-09-04T11:47:23Z
dc.date2017-09
dc.date.accessioned2023-09-27T20:45:07Z
dc.date.available2023-09-27T20:45:07Z
dc.identifier14321785
dc.identifierhttps://doi.org/10.1007/s00229-017-0915-x
dc.identifierhttp://www.locus.ufv.br/handle/123456789/21619
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8947082
dc.descriptionWe consider proper Dupin hypersurfaces of the Euclidean space ℝn+1, that admit principal coordinate systems and have n distinct nonvanishing principal curvatures. We obtain explicitly all such hypersurfaces that have constant Laguerre curvatures. In particular, we show that they are determined by n−2 Laguerre curvatures and two other constants, one of them being nonzero.
dc.formatpdf
dc.formatapplication/pdf
dc.languageeng
dc.publishermanuscripta mathematica
dc.relationv. 154, n. 1– 2, p. 169– 184, september 2017
dc.rightsSpringer-Verlag Berlin Heidelberg
dc.subjectLaguerre curvatures
dc.subjectDupin hypersurfaces
dc.titleDupin hypersurfaces with constant Laguerre curvatures
dc.typeArtigo


Este ítem pertenece a la siguiente institución