dc.creatorMiyagaki, Olimpio Hiroshi
dc.creatorAssunção, Ronaldo B.
dc.creatorCarrião, Paulo Cesar
dc.date2019-02-20T18:07:55Z
dc.date2019-02-20T18:07:55Z
dc.date2007-02-01
dc.date.accessioned2023-09-27T20:43:33Z
dc.date.available2023-09-27T20:43:33Z
dc.identifier0022-247X
dc.identifierhttps://doi.org/10.1016/j.jmaa.2006.03.002
dc.identifierhttp://www.locus.ufv.br/handle/123456789/23625
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8946428
dc.descriptionIn this work we consider existence and multiplicity results of nontrivial solutions for a class of quasilinear degenerate elliptic equations in RN of the form (P)−div[|x|−ap|∇u|p−2∇u]+λ|x|−(a+1)p|u|p−2u=|x|−bq|u|q−2u+f, where x∈RN, 1<p<N, q=q(a,b)≡Np/[N−p(a+1−b)], λ is a parameter, 0⩽a<(N−p)/p, a⩽b⩽a+1, and f∈(Lbq(RN))∗. We look for solutions of problem (P) in the Sobolev space Da1,p(RN) and we prove a version of a concentration-compactness lemma due to Lions. Combining this result with the Ekeland's variational principle and the mountain-pass theorem, we obtain existence and multiplicity results.
dc.formatpdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherJournal of Mathematical Analysis and Applications
dc.relationVolume 326, Issue 1, Pages 137-154, February 2007
dc.rightsOpen Access
dc.subjectDegenerate quasilinear equation
dc.subjectp-Laplacian
dc.subjectVariational methods
dc.subjectCompactness-concentration
dc.titleCritical singular problems via concentration-compactness lemma
dc.typeArtigo


Este ítem pertenece a la siguiente institución