dc.creator | Miyagaki, Olimpio Hiroshi | |
dc.creator | Assunção, Ronaldo B. | |
dc.creator | Carrião, Paulo Cesar | |
dc.date | 2019-02-20T18:07:55Z | |
dc.date | 2019-02-20T18:07:55Z | |
dc.date | 2007-02-01 | |
dc.date.accessioned | 2023-09-27T20:43:33Z | |
dc.date.available | 2023-09-27T20:43:33Z | |
dc.identifier | 0022-247X | |
dc.identifier | https://doi.org/10.1016/j.jmaa.2006.03.002 | |
dc.identifier | http://www.locus.ufv.br/handle/123456789/23625 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8946428 | |
dc.description | In this work we consider existence and multiplicity results of nontrivial solutions for a class of quasilinear degenerate elliptic equations in RN of the form (P)−div[|x|−ap|∇u|p−2∇u]+λ|x|−(a+1)p|u|p−2u=|x|−bq|u|q−2u+f, where x∈RN, 1<p<N, q=q(a,b)≡Np/[N−p(a+1−b)], λ is a parameter, 0⩽a<(N−p)/p, a⩽b⩽a+1, and f∈(Lbq(RN))∗. We look for solutions of problem (P) in the Sobolev space Da1,p(RN) and we prove a version of a concentration-compactness lemma due to Lions. Combining this result with the Ekeland's variational principle and the mountain-pass theorem, we obtain existence and multiplicity results. | |
dc.format | pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Journal of Mathematical Analysis and Applications | |
dc.relation | Volume 326, Issue 1, Pages 137-154, February 2007 | |
dc.rights | Open Access | |
dc.subject | Degenerate quasilinear equation | |
dc.subject | p-Laplacian | |
dc.subject | Variational methods | |
dc.subject | Compactness-concentration | |
dc.title | Critical singular problems via concentration-compactness lemma | |
dc.type | Artigo | |