dc.creatorMonera, M. G.
dc.creatorMontesinos-Amilibia, A.
dc.creatorMoraes, S. M.
dc.creatorSanabria-Codesal, E.
dc.date2018-09-21T11:43:36Z
dc.date2018-09-21T11:43:36Z
dc.date2012-02-01
dc.date.accessioned2023-09-27T20:37:35Z
dc.date.available2023-09-27T20:37:35Z
dc.identifier01668641
dc.identifierhttps://doi.org/10.1016/j.topol.2011.09.029
dc.identifierhttp://www.locus.ufv.br/handle/123456789/21909
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8945237
dc.descriptionWe study the critical points of the normal map ν : N M → R k + n , where M is an immersed k-dimensional submanifold of R k + n , N M is the normal bundle of M and ν ( m , u ) = m + u if u ∈ N m M. Usually, the image of these critical points is called the focal set. However, in that set there is a subset where the focusing is highest, as happens in the case of curves in R 3 with the curve of the centers of spheres with contact of third order with the curve. We give a definition of r-critical points of a smooth map between manifolds, and apply it to study the 2 and 3-critical points of the normal map in general and the 2-critical points for the case k = n = 2 in detail. In the later case we analyze the relation with the strong principal directions of Montaldi (1986) [2].
dc.formatpdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherTopology and its Applications
dc.relationv. 159, n. 2, p. 537- 544, 1 fev. 2012
dc.rightsOpen Access
dc.subjectNormal map
dc.subjectCritical points
dc.subjectFocal set
dc.subjectStrong principal directions
dc.subjectVeronese of curvature
dc.subjectEllipse of curvature
dc.titleCritical points of higher order for the normal map of immersions in R^ d
dc.typeArtigo


Este ítem pertenece a la siguiente institución