dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorde Oliveira, Valeriano Antunes
dc.creatorSilva, Geraldo Nunes
dc.date2014-05-27T11:27:09Z
dc.date2016-10-25T18:39:01Z
dc.date2014-05-27T11:27:09Z
dc.date2016-10-25T18:39:01Z
dc.date2012-11-08
dc.date.accessioned2017-04-06T02:02:44Z
dc.date.available2017-04-06T02:02:44Z
dc.identifierJournal of Global Optimization, p. 1-20.
dc.identifier0925-5001
dc.identifier1573-2916
dc.identifierhttp://hdl.handle.net/11449/73729
dc.identifierhttp://acervodigital.unesp.br/handle/11449/73729
dc.identifier10.1007/s10898-012-0003-4
dc.identifierWOS:000326297400025
dc.identifier2-s2.0-84868281869
dc.identifierhttp://dx.doi.org/10.1007/s10898-012-0003-4
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/894516
dc.descriptionThis work considers nonsmooth optimal control problems and provides two new sufficient conditions of optimality. The first condition involves the Lagrange multipliers while the second does not. We show that under the first new condition all processes satisfying the Pontryagin Maximum Principle (called MP-processes) are optimal. Conversely, we prove that optimal control problems in which every MP-process is optimal necessarily obey our first optimality condition. The second condition is more natural, but it is only applicable to normal problems and the converse holds just for smooth problems. Nevertheless, it is proved that for the class of normal smooth optimal control problems the two conditions are equivalent. Some examples illustrating the features of these sufficient concepts are presented. © 2012 Springer Science+Business Media New York.
dc.languageeng
dc.relationJournal of Global Optimization
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectGeneralized invexity
dc.subjectNonsmooth optimal control
dc.subjectOptimality conditions
dc.titleNew optimality conditions for nonsmooth control problems
dc.typeOtro


Este ítem pertenece a la siguiente institución