dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorPinto, A. R.
dc.creatorCansian, Adriano
dc.creatorMacHado, José Marcio
dc.creatorMontez, Carlos
dc.date2014-05-27T11:27:06Z
dc.date2016-10-25T18:38:49Z
dc.date2014-05-27T11:27:06Z
dc.date2016-10-25T18:38:49Z
dc.date2012-10-05
dc.date.accessioned2017-04-06T02:02:05Z
dc.date.available2017-04-06T02:02:05Z
dc.identifierLATW 2012 - 13th IEEE Latin American Test Workshop.
dc.identifierhttp://hdl.handle.net/11449/73652
dc.identifierhttp://acervodigital.unesp.br/handle/11449/73652
dc.identifier10.1109/LATW.2012.6261236
dc.identifier2-s2.0-84866924986
dc.identifierhttp://dx.doi.org/10.1109/LATW.2012.6261236
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/894446
dc.descriptionWireless sensor network (WSN) Is a technology that can be used to monitor and actuate on environments in a non-intrusive way. The main difference from WSN and traditional sensor networks is the low dependability of WSN nodes. In this way, WSN solutions are based on a huge number of cheap tiny nodes that can present faults in hardware, software and wireless communication. The deployment of hundreds of nodes can overcome the low dependability of individual nodes, however this strategy introduces a lot of challenges regarding network management, real-time requirements and self-optimization. In this paper we present a simulated annealing approach that self-optimize large scale WSN. Simulation results indicate that our approach can achieve self-optimization characteristics in a dynamic WSN. © 2012 IEEE.
dc.languageeng
dc.relationLATW 2012 - 13th IEEE Latin American Test Workshop
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSelf-Optimization
dc.subjectSimulated Annealing
dc.subjectWireless Sensor Networks
dc.subjectNon-intrusive
dc.subjectReal time requirement
dc.subjectSelf-optimization
dc.subjectWireless communications
dc.subjectNetwork management
dc.subjectSimulated annealing
dc.subjectWireless sensor networks
dc.subjectWireless telecommunication systems
dc.subjectSensor nodes
dc.titleSelf-optimization of dense wireless sensor networks based on simulated annealing
dc.typeOtro


Este ítem pertenece a la siguiente institución