dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorAndrade, Maria Gorete C.
dc.creatorFanti, Ermínia L.C.
dc.creatorFêmina, Ligia L.
dc.date2014-05-27T11:26:52Z
dc.date2016-10-25T18:37:36Z
dc.date2014-05-27T11:26:52Z
dc.date2016-10-25T18:37:36Z
dc.date2012-07-01
dc.date.accessioned2017-04-06T01:59:34Z
dc.date.available2017-04-06T01:59:34Z
dc.identifierJP Journal of Geometry and Topology, v. 12, n. 2, p. 159-172, 2012.
dc.identifier0972-415X
dc.identifierhttp://hdl.handle.net/11449/73426
dc.identifierhttp://acervodigital.unesp.br/handle/11449/73426
dc.identifier2-s2.0-84864048964
dc.identifierhttp://www.pphmj.com/abstract/6900.htm
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/894234
dc.descriptionBieri-Eckmann [6] introduced the concept of relative cohomology for a group pair (G, S), where G is a group and S is a family of subgroups of G and, by using that theory, they introduced the concept of Poincaré duality pairs (G, S) and provided a topological interpretation for such pairs through Eilenberg-MacLane pairs K(G, S, 1). A Poincaré duality pair is a pair (G, S) that satisfies two isomorphisms, one between absolute cohomology and relative homology and the second between relative cohomology and absolute homology. In this paper, we present a proof that those two isomorphisms are equivalent. We also present some calculations on duality pairs by using the cohomological invariant defined in [1] and studied in [2-4]. © 2012 Pushpa PublishingHouse.
dc.languageeng
dc.relationJP Journal of Geometry and Topology
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectDuality group
dc.subjectDuality pairs
dc.subjectInverse duality group
dc.subjectPoincaré
dc.subjectRelative (co)homology of groups
dc.titleSome remarks about Poincaré duality pairs
dc.typeOtro


Este ítem pertenece a la siguiente institución