dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorIeong, Chio-In
dc.creatorDong, Cheng
dc.creatorNan, Wenya
dc.creatorRosa, Agostinho
dc.creatorGuimarães, Ronaldo
dc.creatorVai, Mang-I.
dc.creatorMak, Pui-In
dc.creatorWan, Feng
dc.creatorMak, Peng-Un
dc.date2014-05-27T11:26:16Z
dc.date2016-10-25T18:36:02Z
dc.date2014-05-27T11:26:16Z
dc.date2016-10-25T18:36:02Z
dc.date2011-12-01
dc.date.accessioned2017-04-06T01:55:17Z
dc.date.available2017-04-06T01:55:17Z
dc.identifierComputing in Cardiology, v. 38, p. 345-348.
dc.identifier2325-8861
dc.identifier2325-887X
dc.identifierhttp://hdl.handle.net/11449/72936
dc.identifierhttp://acervodigital.unesp.br/handle/11449/72936
dc.identifier2-s2.0-84859963132
dc.identifierhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6164573
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/893766
dc.descriptionThe effect of snoring on the cardiovascular system is not well-known. In this study we analyzed the Heart Rate Variability (HRV) differences between light and heavy snorers. The experiments are done on the full-whole-night polysomnography (PSG) with ECG and audio channels from patient group (heavy snorer) and control group (light snorer), which are gender- and age-paired, totally 30 subjects. A feature Snoring Density (SND) of audio signal as classification criterion and HRV features are computed. Mann-Whitney statistical test and Support Vector Machine (SVM) classification are done to see the correlation. The result of this study shows that snoring has close impact on the HRV features. This result can provide a deeper insight into the physiological understand of snoring. © 2011 CCAL.
dc.languageeng
dc.relationComputing in Cardiology
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAudio channels
dc.subjectAudio signal
dc.subjectClassification criterion
dc.subjectControl groups
dc.subjectHeart rate variability
dc.subjectMann-Whitney
dc.subjectPolysomnography
dc.subjectSupport vector machine (SVM)
dc.subjectCardiology
dc.subjectHeart
dc.subjectStatistical tests
dc.subjectSupport vector machines
dc.titleA snoring classifier based on heart rate variability analysis
dc.typeOtro


Este ítem pertenece a la siguiente institución