dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorNakamura, Rodrigo Yuji Mizobe
dc.creatorClayton, Reginaldo Pereira
dc.creatorPapa, João Paulo
dc.creatorFalcão, Alexandre Xavier
dc.date2014-05-27T11:26:14Z
dc.date2016-10-25T18:35:53Z
dc.date2014-05-27T11:26:14Z
dc.date2016-10-25T18:35:53Z
dc.date2011-12-01
dc.date.accessioned2017-04-06T01:54:42Z
dc.date.available2017-04-06T01:54:42Z
dc.identifierProceedings - 24th SIBGRAPI Conference on Graphics, Patterns and Images, p. 181-188.
dc.identifierhttp://hdl.handle.net/11449/72865
dc.identifierhttp://acervodigital.unesp.br/handle/11449/72865
dc.identifier10.1109/SIBGRAPI.2011.25
dc.identifier2-s2.0-84857188160
dc.identifierhttp://dx.doi.org/10.1109/SIBGRAPI.2011.25
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/893700
dc.descriptionPattern recognition in large amount of data has been paramount in the last decade, since that is not straightforward to design interactive and real time classification systems. Very recently, the Optimum-Path Forest classifier was proposed to overcome such limitations, together with its training set pruning algorithm, which requires a parameter that has been empirically set up to date. In this paper, we propose a Harmony Search-based algorithm that can find near optimal values for that. The experimental results have showed that our algorithm is able to find proper values for the OPF pruning algorithm parameter. © 2011 IEEE.
dc.languageeng
dc.relationProceedings - 24th SIBGRAPI Conference on Graphics, Patterns and Images
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectOptimum-Path Forest
dc.subjectPattern Recognition
dc.subjectSupervised classification
dc.subjectClassification system
dc.subjectForest classifiers
dc.subjectHarmony search
dc.subjectOptimal values
dc.subjectPruning algorithms
dc.subjectReal time
dc.subjectSearch-based algorithms
dc.subjectTraining sets
dc.subjectAlgorithms
dc.subjectClassification (of information)
dc.subjectForestry
dc.subjectPattern recognition
dc.subjectParameter estimation
dc.subjectInformation Retrieval
dc.titleOptimum-Path Forest pruning parameter estimation through Harmony Search
dc.typeOtro


Este ítem pertenece a la siguiente institución