dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorXiao, Huifang
dc.creatorBrennan, M. J.
dc.creatorShao, Yimin
dc.date2014-05-27T11:26:14Z
dc.date2016-10-25T18:35:49Z
dc.date2014-05-27T11:26:14Z
dc.date2016-10-25T18:35:49Z
dc.date2011-12-01
dc.date.accessioned2017-04-06T01:54:29Z
dc.date.available2017-04-06T01:54:29Z
dc.identifierMechanics Research Communications, v. 38, n. 8, p. 560-564, 2011.
dc.identifier0093-6413
dc.identifierhttp://hdl.handle.net/11449/72837
dc.identifierhttp://acervodigital.unesp.br/handle/11449/72837
dc.identifier10.1016/j.mechrescom.2011.07.012
dc.identifier2-s2.0-80052552681
dc.identifierhttp://dx.doi.org/10.1016/j.mechrescom.2011.07.012
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/893673
dc.descriptionThree methods are used to determine the natural frequency of undamped free vibration of a mass interacting with a Hertzian contact stiffness. The exact value is determined using the first integral of motion. The harmonic balance method is used on a transformed equation for an approximate solution, and the multiple scales method is used on an approximate equation. The maximum initial displacement avoiding contact loss is also determined, and the corresponding exact natural frequency is also obtained analytically. The methods are evaluated by studying the free vibration of an elastic sphere on a flat rigid surface. © 2011 Elsevier Ltd © 2011 Elsevier Ltd. All rights reserved.
dc.languageeng
dc.relationMechanics Research Communications
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectHertzian contact stiffness
dc.subjectNatural frequency
dc.subjectUndamped free vibration
dc.subjectApproximate equation
dc.subjectApproximate solution
dc.subjectContact loss
dc.subjectElastic sphere
dc.subjectFirst integral
dc.subjectFree vibration
dc.subjectHarmonic Balance method
dc.subjectHertzian contacts
dc.subjectMultiple scales methods
dc.subjectRigid surfaces
dc.subjectNatural frequencies
dc.subjectSpheres
dc.subjectStiffness
dc.titleOn the undamped free vibration of a mass interacting with a Hertzian contact stiffness
dc.typeOtro


Este ítem pertenece a la siguiente institución