Otro
A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach
Registro en:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 7042 LNCS, p. 581-590.
0302-9743
1611-3349
10.1007/978-3-642-25085-9_69
2-s2.0-81855226076
Autor
Ponti Jr., Moacir P.
Papa, João Paulo
Levada, Alexandre L. M.
Resumen
The research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of OPF ensembles and the framework to design multiple classifier systems. © 2011 Springer-Verlag.
Materias
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
A methodology to find the best classifier in business decision
Vega Vilca, José C.; Torres Núñez, David A. -
Una metodología para encontrar el mejor clasificador en decisión empresarial
Vega Vilca, José Carlos; Torres Núñez, David A. -
Una metodología para encontrar el mejor clasificador en decisión empresarial
Vega Vilca, José Carlos; Torres Núñez, David A.