dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorSerapião, Adriane B. S.
dc.creatorMendes, José Ricardo P.
dc.date2014-05-27T11:24:02Z
dc.date2016-10-25T18:27:37Z
dc.date2014-05-27T11:24:02Z
dc.date2016-10-25T18:27:37Z
dc.date2009-11-09
dc.date.accessioned2017-04-06T01:37:52Z
dc.date.available2017-04-06T01:37:52Z
dc.identifierLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 5579 LNAI, p. 301-310.
dc.identifier0302-9743
dc.identifier1611-3349
dc.identifierhttp://hdl.handle.net/11449/71234
dc.identifierhttp://acervodigital.unesp.br/handle/11449/71234
dc.identifier10.1007/978-3-642-02568-6_31
dc.identifierWOS:000269972300031
dc.identifier2-s2.0-70350633099
dc.identifierhttp://dx.doi.org/10.1007/978-3-642-02568-6_31
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/892240
dc.descriptionThis paper describes an investigation of the hybrid PSO/ACO algorithm to classify automatically the well drilling operation stages. The method feasibility is demonstrated by its application to real mud-logging dataset. The results are compared with bio-inspired methods, and rule induction and decision tree algorithms for data mining. © 2009 Springer Berlin Heidelberg.
dc.languageeng
dc.relationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectBio-inspired
dc.subjectColony algorithms
dc.subjectData sets
dc.subjectDecision-tree algorithm
dc.subjectHybrid particles
dc.subjectRule induction
dc.subjectData mining
dc.subjectDecision trees
dc.subjectIntelligent systems
dc.subjectMud logging
dc.subjectOil wells
dc.subjectPetroleum industry
dc.subjectWell drilling
dc.titleClassification of petroleum well drilling operations with a hybrid particle swarm/ant colony algorithm
dc.typeOtro


Este ítem pertenece a la siguiente institución