dc.contributor | Souza Júnior, Maurício Bezerra de | |
dc.contributor | http://lattes.cnpq.br/4530858702685674 | |
dc.contributor | http://lattes.cnpq.br/8025371753718722 | |
dc.contributor | Parente, Andréa Pereira | |
dc.contributor | http://lattes.cnpq.br/9458055897856809 | |
dc.contributor | Waltz, Flávio da Silva | |
dc.contributor | http://lattes.cnpq.br/5120737621592413 | |
dc.contributor | Fernandes, Heloísa Lajas Sanches | |
dc.contributor | http://lattes.cnpq.br/2840875338255590 | |
dc.contributor | Freitas, Elene de Souza | |
dc.contributor | http://lattes.cnpq.br/1197903619294247 | |
dc.creator | Carmo, Elisa Carneiro Werneck do | |
dc.date | 2023-07-05T20:13:25Z | |
dc.date | 2023-09-27T03:02:08Z | |
dc.date | 2017-08 | |
dc.date.accessioned | 2023-09-27T14:09:27Z | |
dc.date.available | 2023-09-27T14:09:27Z | |
dc.identifier | CARMO, Elisa Carneiro Werneck do. Técnicas de machine learning aplicadas ao monitoramento de partículas em caldeira de recuperação Kraft. 2017. 124 f. TCC (Graduação) - Curso de Engenharia Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2017. | |
dc.identifier | http://hdl.handle.net/11422/21023 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8919797 | |
dc.description | A caldeira de recuperação é um equipamento chave nas plantas de produção de papel e celulose pelo processo Kraft. A deposição de material particulado formado na caldeira representa um dos maiores problemas operacionais, devendo ser monitorada e controlada para prevenção de paradas operacionais não programadas. O processo de formação de partículas neste equipamento é complexo e modelos fenomenológicos são de difícil desenvolvimento. Uma alternativa promissora, que se insere no contexto da Indústria 4.0, é a aplicação de técnicas de aprendizado de máquinas, ou “Machine Learning”, para
modelagem de tal fenômeno. O objetivo do presente trabalho foi, então, propor uma metodologia para o emprego de redes neuronais artificiais na modelagem da formação de material particulado em uma caldeira de recuperação Kraft. Foram utilizadas redes neuronais dos tipos Multicamadas Perceptron (MLP), Base Radial (RBF) e de mapeamento auto-organizável para o desenvolvimento de modelos preditivos e classificatórios a partir de dados históricos de um ano de operação em uma planta
industrial. Foi possível obter uma modelagem satisfatória do número de partículas formadas na caldeira de recuperação Kraft a partir de um modelo “híbrido” de predição e classificação, que realiza a classificação dos valores preditos por uma rede preditiva em duas classes. A classe 1 engloba dados de operação normal, caracterizada por um número de partículas inferior a 200 partículas por minuto, enquanto a classe 2 agrupa os dados de operação anormal e potencialmente insegura, com emissão acima de 200 partículas por minuto. O melhor modelo encontrado se baseia em uma rede MLP de 3 camadas, com 11 neurônios na camada oculta, utilizando conjuntos adicionais de dados obtidos por adição de ruído gaussiano aos dados originais correspondentes à operação anormal. Esta adição
foi realizada para equilibrar a distribuição dos dados operacionais disponíveis. O desempenho da rede de predição, dado pelo coeficiente de correlação entre os valores calculados pela rede e os valores reais, foi superior a 0,87 e o desempenho total de classificação foi de cerca de 87%. Este método é capaz de classificar corretamente aproximadamente 94% dos dados de classe 1 e 77% dos dados de classe 2. Foi obtido, também, um mapa auto-organizável a partir uma rede de mapeamento auto-organizável de topologia 20x5 que permite a identificação de regiões de operação normal, regiões de
transição e regiões de maior probabilidade de operação anormal. Este método pode ser usado na geração de recomendações referentes à segurança operacional, sinalizando condições operacionais com maior potencial de risco de elevada formação de partículas. | |
dc.language | por | |
dc.publisher | Universidade Federal do Rio de Janeiro | |
dc.publisher | Brasil | |
dc.publisher | Escola de Química | |
dc.publisher | UFRJ | |
dc.rights | Acesso Aberto | |
dc.subject | Processo Kraft | |
dc.subject | Machine learning | |
dc.subject | Aprendizado de máquina | |
dc.subject | Redes neuronais artificiais | |
dc.subject | CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO::GERENCIA DE PRODUCAO::PLANEJAMENTO, PROJETO E CONTROLE DE SISTEMAS DE PRODUCAO | |
dc.title | Técnicas de machine learning aplicadas ao monitoramento de partículas em caldeira de recuperação Kraft | |
dc.type | Trabalho de conclusão de graduação | |