dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorLlibre, Jaume
dc.creatorMedrado, João C.R.
dc.creatorDa Silva, Paulo R.
dc.date2014-05-27T11:23:45Z
dc.date2016-10-25T18:26:25Z
dc.date2014-05-27T11:23:45Z
dc.date2016-10-25T18:26:25Z
dc.date2008-12-01
dc.date.accessioned2017-04-06T01:33:59Z
dc.date.available2017-04-06T01:33:59Z
dc.identifierBoletim da Sociedade Paranaense de Matematica, v. 26, n. 1-2, p. 41-52, 2008.
dc.identifier0037-8712
dc.identifier2175-1188
dc.identifierhttp://hdl.handle.net/11449/70752
dc.identifierhttp://acervodigital.unesp.br/handle/11449/70752
dc.identifier10.5269/bspm.v26i1-2.7401
dc.identifier2-s2.0-84881363091.pdf
dc.identifier2-s2.0-84881363091
dc.identifierhttp://dx.doi.org/10.5269/bspm.v26i1-2.7401
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/891819
dc.descriptionIn this paper singularly perturbed vector fields Xε defined in ℝ2 are discussed. The main results use the solutions of the linear partial differential equation XεV = div(Xε)V to give conditions for the existence of limit cycles converging to a singular orbit with respect to the Hausdorff distance. © SPM.
dc.languageeng
dc.relationBoletim da Sociedade Paranaense de Matematica
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectInverse integrating facto
dc.subjectLimit cycles
dc.subjectSingular perturbation
dc.subjectVector fields
dc.titleLimit cycles for singular perturbation problems via inverse integrating factor
dc.typeOtro


Este ítem pertenece a la siguiente institución