dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorCarreno, E. M.
dc.creatorPadilha-Feltrin, A.
dc.date2014-05-27T11:23:40Z
dc.date2016-10-25T18:26:02Z
dc.date2014-05-27T11:23:40Z
dc.date2016-10-25T18:26:02Z
dc.date2008-09-29
dc.date.accessioned2017-04-06T01:32:31Z
dc.date.available2017-04-06T01:32:31Z
dc.identifierIEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, PES.
dc.identifierhttp://hdl.handle.net/11449/70588
dc.identifierhttp://acervodigital.unesp.br/handle/11449/70588
dc.identifier10.1109/PES.2008.4596675
dc.identifierWOS:000264403802127
dc.identifier2-s2.0-52349104733
dc.identifierhttp://dx.doi.org/10.1109/PES.2008.4596675
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/891670
dc.descriptionIn the spatial electric load forecasting, the future land use determination is one of the most important tasks, and one of the most difficult, because of the stochastic nature of the city growth. This paper proposes a fast and efficient algorithm to find out the future land use for the vacant land in the utility service area, using ideas from knowledge extraction and evolutionary algorithms. The methodology was implemented into a full simulation software for spatial electric load forecasting, showing a high rate of success when the results are compared to information gathered from specialists. The importance of this methodology lies in the reduced set of data needed to perform the task and the simplicity for implementation, which is a great plus for most of the electric utilities without specialized tools for this planning activity. © 2008 IEEE.
dc.languageeng
dc.relationIEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, PES
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectDistribution planning
dc.subjectKnowledge extraction
dc.subjectLand use
dc.subjectSpatial electric load forecasting
dc.subjectElectric load management
dc.subjectElectric loads
dc.subjectElectric tools
dc.subjectElectric utilities
dc.subjectEnergy conversion
dc.subjectEvolutionary algorithms
dc.subjectForecasting
dc.subjectHeuristic programming
dc.subjectPotential energy
dc.subjectPotential energy surfaces
dc.subjectPublic utilities
dc.subjectVibrations (mechanical)
dc.subject21st century
dc.subjectEfficient algorithms
dc.subjectElectrical energy
dc.subjectHigh rates
dc.subjectService areas
dc.subjectSimulation softwares
dc.subjectSpecialized tools
dc.subjectStochastic nature
dc.subjectElectric load forecasting
dc.titleEvolutionary heuristic to determine future land use
dc.typeOtro


Este ítem pertenece a la siguiente institución