dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorDantas, Márcio José Horta
dc.creatorBalthazar, José Manoel
dc.date2014-05-27T11:22:37Z
dc.date2016-10-25T18:24:27Z
dc.date2014-05-27T11:22:37Z
dc.date2016-10-25T18:24:27Z
dc.date2007-11-01
dc.date.accessioned2017-04-06T01:27:03Z
dc.date.available2017-04-06T01:27:03Z
dc.identifierZeitschrift fur Angewandte Mathematik und Physik, v. 58, n. 6, p. 940-958, 2007.
dc.identifier0044-2275
dc.identifierhttp://hdl.handle.net/11449/69945
dc.identifierhttp://acervodigital.unesp.br/handle/11449/69945
dc.identifier10.1007/s00033-006-5116-5
dc.identifier2-s2.0-46649107309
dc.identifierhttp://dx.doi.org/10.1007/s00033-006-5116-5
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/891112
dc.descriptionIn this work, motivated by non-ideal mechanical systems, we investigate the following O.D.E. ẋ = f (x) + εg (x, t) + ε2g (x, t, ε), where x ∈ Ω ⊂ ℝn, g, g are T periodic functions of t and there is a 0 ∈ Ω such that f (a 0) = 0 and f′ (a0) is a nilpotent matrix. When n = 3 and f (x) = (0, q (x 3) , 0) we get results on existence and stability of periodic orbits. We apply these results in a non ideal mechanical system: the Centrifugal Vibrator. We make a stability analysis of this dynamical system and get a characterization of the Sommerfeld Effect as a bifurcation of periodic orbits. © 2007 Birkhäuser Verlag, Basel.
dc.languageeng
dc.relationZeitschrift fur Angewandte Mathematik und Physik
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectBifurcation
dc.subjectPeriodic orbits
dc.subjectRegular perturbation theory
dc.subjectSommerfeld effect
dc.subjectStability
dc.titleOn the existence and stability of periodic orbits in non ideal problems: General results
dc.typeOtro


Este ítem pertenece a la siguiente institución