dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Dantas, Márcio José Horta | |
dc.creator | Balthazar, José Manoel | |
dc.date | 2014-05-27T11:22:37Z | |
dc.date | 2016-10-25T18:24:27Z | |
dc.date | 2014-05-27T11:22:37Z | |
dc.date | 2016-10-25T18:24:27Z | |
dc.date | 2007-11-01 | |
dc.date.accessioned | 2017-04-06T01:27:03Z | |
dc.date.available | 2017-04-06T01:27:03Z | |
dc.identifier | Zeitschrift fur Angewandte Mathematik und Physik, v. 58, n. 6, p. 940-958, 2007. | |
dc.identifier | 0044-2275 | |
dc.identifier | http://hdl.handle.net/11449/69945 | |
dc.identifier | http://acervodigital.unesp.br/handle/11449/69945 | |
dc.identifier | 10.1007/s00033-006-5116-5 | |
dc.identifier | 2-s2.0-46649107309 | |
dc.identifier | http://dx.doi.org/10.1007/s00033-006-5116-5 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/891112 | |
dc.description | In this work, motivated by non-ideal mechanical systems, we investigate the following O.D.E. ẋ = f (x) + εg (x, t) + ε2g (x, t, ε), where x ∈ Ω ⊂ ℝn, g, g are T periodic functions of t and there is a 0 ∈ Ω such that f (a 0) = 0 and f′ (a0) is a nilpotent matrix. When n = 3 and f (x) = (0, q (x 3) , 0) we get results on existence and stability of periodic orbits. We apply these results in a non ideal mechanical system: the Centrifugal Vibrator. We make a stability analysis of this dynamical system and get a characterization of the Sommerfeld Effect as a bifurcation of periodic orbits. © 2007 Birkhäuser Verlag, Basel. | |
dc.language | eng | |
dc.relation | Zeitschrift fur Angewandte Mathematik und Physik | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Bifurcation | |
dc.subject | Periodic orbits | |
dc.subject | Regular perturbation theory | |
dc.subject | Sommerfeld effect | |
dc.subject | Stability | |
dc.title | On the existence and stability of periodic orbits in non ideal problems: General results | |
dc.type | Otro | |