dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorDa Silva, Armando M. Leite
dc.creatorCassula, Agnelo M.
dc.creatorNascimento, Luiz C.
dc.creatorFreire Jr., José C.
dc.creatorSacramento, Cleber E.
dc.creatorGuimarães, Ana Carolina R.
dc.date2014-05-27T11:22:03Z
dc.date2016-10-25T18:23:00Z
dc.date2014-05-27T11:22:03Z
dc.date2016-10-25T18:23:00Z
dc.date2006-12-01
dc.date.accessioned2017-04-06T01:21:40Z
dc.date.available2017-04-06T01:21:40Z
dc.identifier2006 9th International Conference on Probabilistic Methods Applied to Power Systems, PMAPS.
dc.identifierhttp://hdl.handle.net/11449/69253
dc.identifierhttp://acervodigital.unesp.br/handle/11449/69253
dc.identifier10.1109/PMAPS.2006.360423
dc.identifier2-s2.0-46149100501
dc.identifierhttp://dx.doi.org/10.1109/PMAPS.2006.360423
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/890517
dc.descriptionRegulatory authorities in many countries, in order to maintain an acceptable balance between appropriate customer service qualities and costs, are introducing a performance-based regulation. These regulations impose penalties, and in some cases rewards, which introduce a component of financial risk to an electric power utility due to the uncertainty associated with preserving a specific level of system reliability. In Brazil, for instance, one of the reliability indices receiving special attention by the utilities is the Maximum Continuous Interruption Duration per customer (MCID). This paper describes a chronological Monte Carlo simulation approach to evaluate probability distributions of reliability indices, including the MCID, and the corresponding penalties. In order to get the desired efficiency, modern computational techniques are used for modeling (UML -Unified Modeling Language) as well as for programming (Object- Oriented Programming). Case studies on a simple distribution network and on real Brazilian distribution systems are presented and discussed. © Copyright KTH 2006.
dc.languageeng
dc.relation2006 9th International Conference on Probabilistic Methods Applied to Power Systems, PMAPS
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectDistribution reliability
dc.subjectMarkov chains
dc.subjectMonte Carlo simulation
dc.subjectObject-oriented programming
dc.subjectCanning
dc.subjectComputational efficiency
dc.subjectComputer programming languages
dc.subjectCosmic ray detectors
dc.subjectDistributed parameter networks
dc.subjectDistribution of goods
dc.subjectElectric power distribution
dc.subjectElectric power systems
dc.subjectElectric power transmission networks
dc.subjectLaws and legislation
dc.subjectLocal area networks
dc.subjectMonte Carlo methods
dc.subjectObject oriented programming
dc.subjectPower transmission
dc.subjectProbability
dc.subjectPumps
dc.subjectRisk assessment
dc.subjectUnified Modeling Language
dc.subjectApplied (CO)
dc.subjectBalance (weighting)
dc.subjectcase studies
dc.subjectComputational techniques
dc.subjectCustomer services
dc.subjectdistribution networks
dc.subjectDistribution system reliability
dc.subjectDistribution systems
dc.subjectElectric power utilities
dc.subjectFinancial risks
dc.subjectIn order
dc.subjectinternational conferences
dc.subjectMaximum continuous interruption duration (MCID)
dc.subjectMonte Carlo (MC)
dc.subjectMonte Carlo Simulation (MCS)
dc.subjectPerformance-based regulation (PBR)
dc.subjectpower systems
dc.subjectProbabilistic methods
dc.subjectRegulatory Authority (RA)
dc.subjectReliability index (RI)
dc.subjectsystem reliability
dc.subjectUnified Modeling (UML)
dc.subjectProbability distributions
dc.titleChronological Monte Carlo-based assessment of distribution system reliability
dc.typeOtro


Este ítem pertenece a la siguiente institución