dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorRafikov, Marat
dc.creatorBalthazar, José Manoel
dc.date2014-05-27T11:21:42Z
dc.date2016-10-25T18:21:27Z
dc.date2014-05-27T11:21:42Z
dc.date2016-10-25T18:21:27Z
dc.date2005-12-01
dc.date.accessioned2017-04-06T01:15:53Z
dc.date.available2017-04-06T01:15:53Z
dc.identifierProceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - DETC2005, v. 6 B, p. 867-873.
dc.identifierhttp://hdl.handle.net/11449/68552
dc.identifierhttp://acervodigital.unesp.br/handle/11449/68552
dc.identifier10.1115/DETC2005-84998
dc.identifier2-s2.0-33244461989
dc.identifierhttp://dx.doi.org/10.1115/DETC2005-84998
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/889882
dc.descriptionIn this work, the linear and nonlinear feedback control techniques for chaotic systems were been considered. The optimal nonlinear control design problem has been resolved by using Dynamic Programming that reduced this problem to a solution of the Hamilton-Jacobi-Bellman equation. In present work the linear feedback control problem has been reformulated under optimal control theory viewpoint. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations for the Rössler system and the Duffing oscillator are provided to show the effectiveness of this method. Copyright © 2005 by ASME.
dc.languageeng
dc.relationProceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - DETC2005
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectChaos theory
dc.subjectComputer simulation
dc.subjectDynamic programming
dc.subjectFeedback control
dc.subjectHamiltonians
dc.subjectNonlinear control systems
dc.subjectOptimal control systems
dc.subjectOscillations
dc.subjectDuffing oscillator
dc.subjectHamilton Jacobi Bellman equation
dc.subjectOptimal control theory
dc.subjectRössler system
dc.subjectLinear control systems
dc.titleOptimal linear and nonlinear control design for chaotic systems
dc.typeOtro


Este ítem pertenece a la siguiente institución