dc.creatorRibeiro, Juliana Martins
dc.creatorBandeira, Cristiano Cota
dc.creatorFaria, Bruno Generoso de
dc.creatorMelo, Marina Luiza Rodrigues Alves
dc.creatorVieira, Francisco O.
dc.creatorGiunchetti, Rodolfo Cordeiro
dc.creatorUzonna, Jude E.
dc.creatorCarvalho, Andréa Teixeira de
dc.creatorPascoal, Vanessa Peruhype Magalhães
dc.creatorFagundes, Elaine Maria de Souza
dc.date2020-10-07T15:34:34Z
dc.date2020-10-07T15:34:34Z
dc.date2020
dc.date.accessioned2023-09-27T00:10:42Z
dc.date.available2023-09-27T00:10:42Z
dc.identifierRIBEIRO, Juliana Martins et al. An ex vivo multiparametric flow cytometry assay using human whole blood to simultaneously measure cytotoxicity and leishmanicidal activities. Experimental Parasitology, v. 216, 107940, 2020.
dc.identifier0014-4894
dc.identifierhttps://www.arca.fiocruz.br/handle/icict/43858
dc.identifier10.1016/j.exppara.2020.107940
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8898224
dc.descriptionTherapeutic options for the treatment of leishmaniasis are insufficient and need improvements owing to their low efficiency and high toxicity as well as the emergence of resistant strains. The limited number of new drugs for neglected diseases and lack of innovation in your development are still challenges. In this context, the process of discovery and development of biological assays play a pivotal role for the identification of bioactive compounds. The assays currently used for screening of drugs with cytotoxic activity against Leishmania parasites, include different processes that utilize intact parasite (free or intracellular) or specific enzymes of metabolism as a target cell. These assays allow the screening of large numbers of samples followed by more detailed secondary confirmatory assays to confirm the observed activity and assess their toxicity. In the present study, we described the development of a new functional and more complete assay that enables simultaneous assessment of potential anti-Leishmania compounds through evaluation of internalization of fluorescein-labeled L. braziliensis promastigotes by human peripheral blood monocytes and their cytotoxicity by flow cytometry. We standardized the conditions for parasite labeling to achieve better phagocytosis analysis by setting the ratio of number of parasites per cell as 1 to 2, at incubation time of 6h. The cytotoxicity assessment was performed by the quantification of cells undergoing early/late apoptosis and necrosis using a double labelling platform employing 7AAD for late apoptosis and necrosis analysis and Annexin-V for early apoptosis evaluation. Hemolysis analysis was an additional parameter to test cytotoxicity. Two drugs used on clinic (Amphotericin B and Glucantime®) were used to validate the proposed methodology, and the assay was able to detect their known leishmanicidal activity and immunotoxicity properties. This new predictive assay will contribute to the development of translational medicine strategies in drug discovery for neglected diseases such as leishmaniasis.
dc.formatapplication/pdf
dc.languageeng
dc.publisherElsevier
dc.rightsrestricted access
dc.subjectLeishmania
dc.subjectFlow cytometry
dc.subjectCytotoxicity Drug discovery
dc.subjectAssay development
dc.titleAn ex vivo multiparametric flow cytometry assay using human whole blood to simultaneously measure cytotoxicity and leishmanicidal activities
dc.typeArticle


Este ítem pertenece a la siguiente institución