dc.creatorCosta, André Gabriel Ferreira Calaça da
dc.creatorColosimo, Enrico Antonio
dc.creatorVaz, Aline Bruna Martins
dc.creatorSilva, José Luiz Padilha
dc.creatorAmorim, Leila Denise Alves Ferreira
dc.date2022-08-10T17:08:31Z
dc.date2022-08-10T17:08:31Z
dc.date2017
dc.date.accessioned2023-09-26T23:58:19Z
dc.date.available2023-09-26T23:58:19Z
dc.identifierCOSTA, André Gabriel Ferreira Calaça da et al Marginal models for the association structure of hierarchical binary responses. Journal of Applied Statistics, v. 44, n. 10, p. 1827-1838, 2017. doi.org/10.1080/02664763.2016.1238042
dc.identifier0266-4763
dc.identifierhttps://www.arca.fiocruz.br/handle/icict/54567
dc.identifier10.1080/02664763.2016.1238042
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8896105
dc.descriptionCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
dc.descriptionClustered binary responses are often found in ecological studies. Data analysis may include modeling the marginal probability response. However, when the association is the main scientific focus, modeling the correlation structure between pairs of responses is the key part of the analysis. Second-order generalized estimating equations (GEE) are established in the literature. Some of them are more efficient in computational terms, especially facing large clusters. Alternating logistic regression (ALR) and orthogonalized residual (ORTH) GEE methods are presented and compared in this paper. Simulation results show a slightly superiority of ALR over ORTH. Marginal probabilities and odds ratios are also estimated and compared in a real ecological study involving a three-level hierarchical clustering. ALR and ORTH models are useful for modeling complex association structure with large cluster sizes.
dc.formatapplication/pdf
dc.languageeng
dc.publisherFrancis & Taylor
dc.rightsrestricted access
dc.subjectALR
dc.subjectcorrelated binary responses
dc.subjectGEE
dc.subjectodds ratio
dc.titleMarginal models for the association structure of hierarchical binary responses
dc.typeArticle


Este ítem pertenece a la siguiente institución