dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorRosa, G. J M
dc.creatorPadovani, C. R.
dc.creatorGianola, D.
dc.date2014-05-27T11:20:35Z
dc.date2016-10-25T18:18:21Z
dc.date2014-05-27T11:20:35Z
dc.date2016-10-25T18:18:21Z
dc.date2003-01-01
dc.date.accessioned2017-04-06T01:04:37Z
dc.date.available2017-04-06T01:04:37Z
dc.identifierBiometrical Journal, v. 45, n. 5, p. 573-590, 2003.
dc.identifier0323-3847
dc.identifierhttp://hdl.handle.net/11449/67151
dc.identifierhttp://acervodigital.unesp.br/handle/11449/67151
dc.identifier10.1002/bimj.200390034
dc.identifier2-s2.0-0042570344
dc.identifierhttp://dx.doi.org/10.1002/bimj.200390034
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/888636
dc.descriptionLinear mixed effects models have been widely used in analysis of data where responses are clustered around some random effects, so it is not reasonable to assume independence between observations in the same cluster. In most biological applications, it is assumed that the distributions of the random effects and of the residuals are Gaussian. This makes inferences vulnerable to the presence of outliers. Here, linear mixed effects models with normal/independent residual distributions for robust inferences are described. Specific distributions examined include univariate and multivariate versions of the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted and Markov chain Monte Carlo is used to carry out the posterior analysis. The procedures are illustrated using birth weight data on rats in a texicological experiment. Results from the Gaussian and robust models are contrasted, and it is shown how the implementation can be used for outlier detection. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process in linear mixed models, and they are easily implemented using data augmentation and MCMC techniques.
dc.languageeng
dc.relationBiometrical Journal
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectBayesian inference
dc.subjectGibbs sampling
dc.subjectMetropolis-Hastings
dc.subjectMixed effects model
dc.subjectNormal/independent distribution
dc.subjectRobust model
dc.titleRobust linear mixed models with normal/independent distributions and Bayesian MCMC implementation
dc.typeOtro


Este ítem pertenece a la siguiente institución