dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorAndreani, Roberto
dc.creatorMartÍnez, José Mario
dc.date2014-05-27T11:20:24Z
dc.date2016-10-25T18:17:37Z
dc.date2014-05-27T11:20:24Z
dc.date2016-10-25T18:17:37Z
dc.date2002-02-01
dc.date.accessioned2017-04-06T01:01:54Z
dc.date.available2017-04-06T01:01:54Z
dc.identifierMathematical Methods of Operations Research, v. 54, n. 3, p. 345-358, 2002.
dc.identifier1432-2994
dc.identifierhttp://hdl.handle.net/11449/66811
dc.identifierhttp://acervodigital.unesp.br/handle/11449/66811
dc.identifier10.1007/s001860100158
dc.identifierWOS:000174672100001
dc.identifier2-s2.0-0035261944
dc.identifierhttp://dx.doi.org/10.1007/s001860100158
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/888330
dc.descriptionMathematical programming problems with equilibrium constraints (MPEC) are nonlinear programming problems where the constraints have a form that is analogous to first-order optimality conditions of constrained optimization. We prove that, under reasonable sufficient conditions, stationary points of the sum of squares of the constraints are feasible points of the MPEC. In usual formulations of MPEC all the feasible points are nonregular in the sense that they do not satisfy the Mangasarian-Fromovitz constraint qualification of nonlinear programming. Therefore, all the feasible points satisfy the classical Fritz-John necessary optimality conditions. In principle, this can cause serious difficulties for nonlinear programming algorithms applied to MPEC. However, we show that most feasible points do not satisfy a recently introduced stronger optimality condition for nonlinear programming. This is the reason why, in general, nonlinear programming algorithms are successful when applied to MPEC.
dc.languageeng
dc.relationMathematical Methods of Operations Research
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMathematical programming with equilibrium constraints
dc.subjectMinimization algorithms
dc.subjectOptimality conditions
dc.subjectReformulation
dc.subjectAlgorithms
dc.subjectConvergence of numerical methods
dc.subjectOptimal control systems
dc.subjectOptimization
dc.subjectProblem solving
dc.subjectMathematical programming with equilibrium constraints (MPEC)
dc.subjectNonlinear programming
dc.titleOn the solution of mathematical programming problems with equilibrium constraints
dc.typeOtro


Este ítem pertenece a la siguiente institución