dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorAbdullaev, F. Kh
dc.creatorGammal, A.
dc.creatorTomio, L.
dc.creatorFrederico, T.
dc.date2014-05-27T11:20:15Z
dc.date2016-10-25T18:17:00Z
dc.date2014-05-27T11:20:15Z
dc.date2016-10-25T18:17:00Z
dc.date2001-04-01
dc.date.accessioned2017-04-06T00:59:21Z
dc.date.available2017-04-06T00:59:21Z
dc.identifierPhysical Review A. Atomic, Molecular, and Optical Physics, v. 63, n. 4, p. 436041-4360414, 2001.
dc.identifier1050-2947
dc.identifierhttp://hdl.handle.net/11449/66487
dc.identifierhttp://acervodigital.unesp.br/handle/11449/66487
dc.identifier10.1103/PhysRevA.63.043604
dc.identifierWOS:000168095300097
dc.identifier2-s2.0-0035306870.pdf
dc.identifier2-s2.0-0035306870
dc.identifierhttp://dx.doi.org/10.1103/PhysRevA.63.043604
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/888053
dc.descriptionIn three-dimensional trapped Bose-Einstein condensate (BEC), described by the time-dependent Gross-Pitaevskii-Ginzburg equation, we study the effect of initial conditions on stability using a Gaussian variational approach and exact numerical simulations. We also discuss the validity of the criterion for stability suggested by Vakhitov and Kolokolov. The maximum initial chirp (initial focusing defocusing of cloud) that can lead a stable condensate to collapse even before the number of atoms reaches its critical limit is obtained for several specific cases. When we consider two- and three-body nonlinear terms, with negative cubic and positive quintic terms, we have the conditions for the existence of two phases in the condensate. In this case, the magnitude of the oscillations between the two phases are studied considering sufficient large initial chirps. The occurrence of collapse in a BEC with repulsive two-body interaction is also shown to be possible.
dc.languageeng
dc.relationPhysical Review A: Atomic, Molecular, and Optical Physics
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAtoms
dc.subjectComputer simulation
dc.subjectHamiltonians
dc.subjectKinetic energy
dc.subjectLagrange multipliers
dc.subjectMathematical models
dc.subjectPotential energy
dc.subjectProbability distributions
dc.subjectVariational techniques
dc.subjectWave equations
dc.subjectBose-Einstein condensates (BEC)
dc.subjectQuantum theory
dc.titleStability of trapped Bose-Einstein condensates
dc.typeOtro


Este ítem pertenece a la siguiente institución