dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorGorbar, E. V.
dc.creatorNatale, A. A.
dc.date2014-05-27T11:19:59Z
dc.date2016-10-25T18:16:41Z
dc.date2014-05-27T11:19:59Z
dc.date2016-10-25T18:16:41Z
dc.date2000-12-01
dc.date.accessioned2017-04-06T00:58:12Z
dc.date.available2017-04-06T00:58:12Z
dc.identifierPhysical Review D - Particles, Fields, Gravitation and Cosmology, v. 61, n. 5, p. 1-9, 2000.
dc.identifier0556-2821
dc.identifierhttp://hdl.handle.net/11449/66331
dc.identifierhttp://acervodigital.unesp.br/handle/11449/66331
dc.identifier10.1103/PhysRevD.61.054012
dc.identifierWOS:000085685600026
dc.identifier2-s2.0-33750568866.pdf
dc.identifier2-s2.0-33750568866
dc.identifier2-s2.0-17044386489
dc.identifierhttp://dx.doi.org/10.1103/PhysRevD.61.054012
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/887919
dc.descriptionUsing the Cornwall-Jackiw-Tomboulis effective potential for composite operators we compute the QCD vacuum energy as a function of the dynamical quark and gluon propagators, which are related to their respective condensâtes as predicted by the operator product expansion. The identification of this result to the vacuum energy obtained from the trace of the energy-momentum tensor allows us to study the gluon self-energy, verifying that it is fairly represented in the ultraviolet by the asymptotic behavior predicted by the operator product expansion, and in the infrared it is frozen at its asymptotic value at one scale of the order of the dynamical gluon mass. We also discuss the implications of this identity for heavy and light quarks. For heavy quarks we recover, through the vacuum energy calculation, the relation nij{filif)-îi(asl'n)GlivGllv obtained many years ago with QCD sum rules. ©2000 The American Physical Society.
dc.languageeng
dc.relationPhysical Review D
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleRelating the quark and gluon condensâtes through the QCD vacuum energy
dc.typeOtro


Este ítem pertenece a la siguiente institución