dc.creatorAzevedo, Leonardo C. de
dc.creatorPereira, Cecilia Hedin
dc.creatorLent, Roberto
dc.date2013-02-20T17:14:42Z
dc.date2013-02-20T17:14:42Z
dc.date1997
dc.date.accessioned2023-09-26T21:13:25Z
dc.date.available2023-09-26T21:13:25Z
dc.identifierAZEVEDO, Leonardo C. de; HEIDIN-PEREIRA, Cecília; LENT, Roberto. Callosal neurons in the cingulate cortical plate and subplate of human fetuses. J. comp. neurol., New York, v. 386, n.1, p. 60-70, sep. 1997.
dc.identifier0021-9967
dc.identifierhttps://www.arca.fiocruz.br/handle/icict/6321
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8871075
dc.descriptionFINEP
dc.descriptionGiven the scarcity of data on the development of the cerebral cortex and its connections in man, four brains of human fetuses at 25, 26, 30, and 32 weeks postovulation were used to investigate the following: 1) the radial distribution of callosal neurons in the cingulate cortex at the immediate postmigratory period; 2) the existence of callosally projecting neurons in the cortical subplate; and 3) the dendritic morphology of developing callosal neurons. The carbocyanine dye (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) (DiI) was used as a fluorescent postmortem tracer for the identification and morphological description of callosal neurons, 4-6 months after the insertion of DiI crystals at the callosal midplane. Sixty-one completely labeled neurons were selected for microscopical analysis, drawn by use of a camera lucida and photographed. The main findings were the following: 1) the human cingulate cortex at 25-32 weeks postovulation contains callosally projecting neurons both in the cortical plate and in the subplate; 2) callosal cells in the plate are mostly spiny pyramids with somata distributed uniformly throughout the depth of the plate, irrespective of rostrocaudal position. They have well-differentiated basal dendrites and apical dendrites that consistently ramify within layer 1; 3) subplate callosal cells are smooth neurons of diverse dendritic morphology, distributed widely throughout the subplate depth. They were classified into four cell types according to the dendritic morphology: radially oriented, horizontally oriented, multipolars, and inverted pyramids. These findings extend to the human brain some of the evidence obtained in animals concerning the development of the cerebral cortex, especially those that are relevant to the formation of a transitory circuitry in the subplate.
dc.formatapplication/pdf
dc.languageeng
dc.publisherWiley-Liss
dc.relationAboitiz, F., A.B. Scheibel, R.S. Fisher, and E. Zaidel (1992) Fiber composition of the human corpus callosum. Brain Res. 598:143–153.
dc.relationAggoun-Zouaoui, D., and G.M. Innocenti (1994) Juvenile visual callosal axons in kittens display origin- and fate-related morphology and distribution of arbors. Eur. J. Neurosci. 6:1846–1863.
dc.relationAntonini, A., and C.J. Shatz (1990) Relation between putative transmitter phenotypes and connectivity of subplate neurons during cerebral cortex development. Eur. J. Neurosci. 2:744–761.
dc.relationAuladell, C., A. Martinez, S. Alcantara, H. Supe`r, and E. Soriano (1995) Migrating neurons in the developing cerebral cortex of the mouse send callosal axons. Neuroscience 64:1091–1103.
dc.relationBecker, L.E., D.L. Armstrong, F. Chan, and M.M. Wood (1984) Dendritic development in human occipital cortical neurons. Dev. Brain Res. 13:117–124.
dc.relationBerbel, P., and G.M. Innocenti (1988) The development of the corpus callosum in cats: A light- and electron-microscopic study. J. Comp. Neurol. 276:132–156.
dc.relationChalupa, L.M., and H.P. Killackey (1989) Process elimination underlies ontogenetic change in the distribution of callosal projection neurons in the postcentral gyrus of the fetal rhesus monkey. Proc. Natl. Acad. Sci. USA86:1076–1079.
dc.relationChow, K.L., H.D. Baumbach, and R. Lawson (1981) Callosal projections of the striate cortex in the neonatal rabbit. Exp. Brain Res. 42:122–126.
dc.relationChun, J.J.M., M.J. Nakamura, and C.J. Shatz (1987) Transient cells of the developing mammalian telencephalon are peptide immunoreactive neurons. Nature 325:617–620.
dc.relationCode, R.A., and J.A. Winer (1985) Commissural neurons in layer III of cat primary auditory cortex (AI): Pyramidal and non-pyramidal cell input. J. Comp. Neurol. 242:485–510.
dc.relationdeAzevedo, L.C., R. Lent, and C. Hedin-Pereira (1995) Callosal neurons and glial cells in the developing cerebral cortex of human fetuses. Neurosci. Abstr. 21:2021.
dc.relationdeAzevedo, L.C., M.M. Rocha, C. Hedin-Pereira, J.G. Franca, and R. Lent (1996) The emergence of NADPH-diaphorase-positive neurons in the cortical subplate of human fetuses. Neurosci. Abstr. 22:1973.
dc.relationDe Carlos, J.A., and D.D.M. O’Leary (1992) Growth and targeting of subplate axons and establishment of major cortical pathways. J. Neurosci. 12:1194–1211.
dc.relationDiao, Y-C., and K-F. So (1991) Dendritic morphology of visual callosal neurons in the golden hamster. Brain Behav. Evol. 37:1–9.
dc.relationDursteler, M.R., C. Blakemore, and L.J. Garey (1979) Projections to the visual cortex in the golden hamster. J. Comp. Neurol. 183:185–204.
dc.relationGames, K.D., and J.A. Winer (1988) Layer V in rat auditory cortex: projections to the inferior colliculus and contralateral cortex. Hearing Res. 34:1–26.
dc.relationGodement, P., J. Vanselow, S. Thanos, and F. Bonhoeffer (1987) A study of developing visual systems with a new method of staining neurones and their processes in fixed tissue. Development 101:697–713.
dc.relationHallman, L.E., B.R. Schofield, and C-S. Lin (1988) Dendritic morphology and axon collaterals of corticotectal, corticopontine, and callosal neurons in layer V of primary visual cortex of the hooded rat. J. Comp. Neurol. 272:149–160.
dc.relationHonig, M.G., and R.I. Hume (1989) Dil and DiO: Versatile fluorescent dyes for neuronal labelling and pathway tracing. Trends Neurosci. 12:333– 341.
dc.relationHu¨ bener, M., and J. Bolz (1988) Morphology of identified projection neurons in layer V of rat visual cortex. Neurosci. Lett. 94:76–81.
dc.relationHughes, C.M., and A. Peters (1990) Morphological evidence for callosally projecting nonpyramidal neurons in rat visual cortex. Anat. Embryol. 182:591–604.
dc.relationInnocenti, G.M. (1981) Growth and reshaping of axons in the establishment of visual callosal connections. Science 212:824–827.
dc.relationInnocenti, G.M., and R. Caminiti (1980) Postnatal shaping of callosal connections from sensory areas. Exp. Brain Res. 38:381–394.
dc.relationInnocenti, G.M., and S.K. Clarke (1984) The organization of immature callosal connections. J. Comp. Neurol. 230:287–309.
dc.relationInnocenti, G.M., L. Fiore, and R. Caminiti (1977) Exuberant projection into the corpus callosum from the visual cortex of newborn cats. Neurosci. Lett. 4:237–242.
dc.relationIvy, G.O., and H.P. Killackey (1981) The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex. J. Comp. Neurol. 195:367–389.
dc.relationJacobson, S., and J.Q. Trojanowski (1974) The cells of origin of the corpus callosum in rat, cat, and rhesus monkey. Brain Res. 74:149–155.
dc.relationJouandet, M.L., L.J. Garey, and H-P. Lipp (1984) Distribution of the cells of origin of the corpus callosum and anterior commissure in the marmoset monkey. Anat. Embryol. 169:45–59.
dc.relationKillackey, H.P., and L.M. Chalupa (1986) Ontogenetic change in the distribution of callosal projection neurons in the postcentral gyrus of the fetal rhesus monkey. J. Comp. Neurol. 244:331–348.
dc.relationKoenderink, M.J.Th., H.B.M. Uylings, and L. Mrzljak (1994) Postnatal maturation of the layer III pyramidal neurons in the human prefrontal cortex:Aquantitative Golgi analysis. Brain Res. 653:173–182.
dc.relationKoenderink, M.J.Th., and H.B.M. Uylings (1995) Postnatal maturation of layer V pyramidal neurons in the human prefrontal cortex: A quantitative Golgi analysis. Brain Res. 678:233–243.
dc.relationKoester, S.E., and D.D.M. O’Leary (1992) Functional classes of cortical projection neurons develop dendritic distinctions by class-specific sculpting of an early common pattern. J. Neurosci. 12:1382–1393.
dc.relationKoester, S.E., and D.D.M. O’Leary (1994) Axons of early generated neurons in cingulate cortex pioneer the corpus callosum. J. Neurosci. 14:6608– 6620.
dc.relationKostovic, I. (1990) Structural and histochemical reorganization of the human prefrontal cortex during perinatal and postnatal life. Progr. Brain Res. 85:223–240.
dc.relationKostovic, I., and P.S. Goldman-Rakic (1983) Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain. J. Comp. Neurol. 219:431– 447.
dc.relationKostovic, I., and J. Krmpotic (1976) Early prenatal ontogenesis of the neuronal connections in the interhemispheric cortex of the human gyrus cinguli. Verh. Anat. Ges. 70:305–316.
dc.relationKostovic, I., and P. Rakic (1984) Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining. J. Neurosci. 4:25–42.
dc.relationKostovic, I., and P. Rakic (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J. Comp. Neurol. 297:441–470.
dc.relationKostovic, I., J. Skavic, and D. Strinovic (1988) Acetylcholinesterase in the human frontal associative cortex during the period of cognitive development: Early laminar shifts and late innervation of pyramidal neurons. Neurosci. Lett. 90:107–112.
dc.relationKrmpotic-Nemanic, J., I. Kostovic, Z. Kelovic, and D. Nemanic (1980) Development of acetylcholinesterase (AChE) staining in human fetal auditory cortex. Acta Otolaryngol. 89:388–392.
dc.relationKrmpotic-Nemanic, J., I. Kostovic, Z. Kelovic, D. Nemanic, and L. Mrzljak (1983) Development of the human fetal auditory cortex: Growth of afferent fibers. Acta Anat. 116:69–73.
dc.relationLaMantia, A.S., and P. Rakic (1990) Axon overproduction and elimination in the corpus callosum of the developing Rhesus monkey. J. Neurosci. 10:2156–2175.
dc.relationLent, R., C. Hedin-Pereira, J.R.L. Menezes, and S. Jhaveri (1990) Neurogenesis and development of callosal and intracortical connections in the hamster. Neuroscience 38:21–37.
dc.relationLent, R., L. deAzevedo, and C. Hedin-Pereira (1995) Callosally-projecting subplate cells in fetal human brains. Neurosci. Abstr. 21:2021.
dc.relationMarin-Padilla, M. (1969) Origin of the pericellular baskets of the pyramidal cells of the human motor cortex:AGolgi study. Brain Res. 14:633–646.
dc.relationMarin-Padilla, M. (1970a) Prenatal and early postnatal ontogenesis of the human motor cortex: a Golgi study. I. The prenatal sequential development of the cortical layers. Brain Res. 23:167–183.
dc.relationMarin-Padilla, M. (1970b) Prenatal and early postnatal ontogenesis of the human motor cortex: A Golgi study. II. The basket-pyramidal cell system. Brain Res. 23:185–191.
dc.relationMarin-Padilla, M. (1992) Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: A unifying theory. J. Comp. Neurol. 321:223–240.
dc.relationMcConnell, S.K., A. Ghosh, and C.J. Shatz (1989) Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 245:978–982.
dc.relationMrzljak, L., H.B.M. Uylings, I. Kostovic, and C.G. Van Eden (1988) Prenatal development of neurons in the human prefrontal cortex. I. A qualitative Golgi study. J. Comp. Neurol. 271:355–386.
dc.relationMrzljak, L., H.B.M. Uylings, C.G. Van Eden, and M. Juda´s (1990) Neuronal development in human prefrontal cortex in prenatal and postnatal stages. Prog. Brain Res. 85:185–222.
dc.relationMrzljak, L., H.B.M. Uylings, I. Kostovic, and C.G. Van Eden (1992) Prenatal development of neurons in the human prefrontal cortex. II. A quantitative Golgi study. J. Comp. Neurol. 316:485–496.
dc.relationO’Leary, D.D.M., B.B. Stanfield, and W.M. Cowan (1981) Evidence that the early postnatal restriction of the cells of origin of the callosal projection is due to the elimination of axonal collaterals rather than to the death of neurons. Dev. Brain Res. 1:607–617.
dc.relationPerry, E.K., C.J. Smith, J.R. Atack, J.M. Candy,M. Johnson, and R.H. Perry (1986) Neocortical cholinergic enzyme and receptor activities in the human fetal brain. J. Neurochem. 47:1262–1269.
dc.relationPeters, A., B.R. Payne, and K. Josephson (1990) Transcallosal nonpyramidal cell projections from visual cortex in the cat. J. Comp. Neurol. 302:124–142.
dc.relationPurpura, D.P. (1975) Dendritic differentiation in human cerebral cortex: Normal and aberrant developmental patterns. In G.W. Kreutzberg (ed): DEVELOPING CALLOSAL NEURONS IN HUMANS 69 Physiology and Pathology of Dendrites. Advances in Neurology, Vol. 12. New York: Raven Press, pp. 91–116.
dc.relationRakic, P., and P.I. Yakovlev (1968) Development of the corpus callosum and cavum septi in man. J. Comp. Neurol. 132:45–72.
dc.relationSchwartz, M.L., P. Rakic, and P.S. Goldman-Rakic (1991) Early phenotype expression of cortical neurons: Evidence that a subclass of migrating neurons have callosal axons. Proc. Natl. Acad. Sci. USA 88:1354–1358.
dc.relationSegraves, M.A., and A.C. Rosenquist (1982) The distribution of the cells of origin of callosal projections in cat visual cortex. J. Neurosci. 2:1079– 1089.
dc.relationSripanidkulchai, K., and J.M. Wyss (1987) The laminar organization of efferent neuronal bodies in the retrosplenial granular cortex. Brain Res. 406:255–269.
dc.relationVan Essen, D.C., W.T. Newsome, and J.L. Bixby (1982) The pattern of interhemispheric connections and its relationships to extrastriate visual areas in the macaque monkey. J. Neurosci. 2:265–283.
dc.relationVercelli, A., F. Assal, and G.M. Innocenti (1992) Emergence of callosallyprojecting neurons with stellate morphology in the visual cortex of the kitten. Exp. Brain Res. 90:346–358.
dc.relationWise, S.P., and E.G. Jones (1976) The organization and postnatal development of the commissural projection of the rat somatic sensory cortex. J. Comp. Neurol. 168:313–343.
dc.relationYorke, C.H., and V.S. Caviness (1975) Interhemispheric neocortical connections of the corpus callosum in the normal mouse: A study based on anterograde and retrograde methods. J. Comp. Neurol. 164: 233–246.
dc.rightsrestricted access
dc.subjectCorpus Callosum
dc.subjectCortical Development
dc.subjectLimbic System
dc.subjectInterhemispheric Connections
dc.subjectHuman Brain
dc.subjectCórtex Cerebral
dc.subjectCorpo Caloso
dc.subjectFeto
dc.subjectGiro do Cíngulo
dc.titleCallosal neurons in the cingulate cortical plate and subplate of human fetuses
dc.typeArticle


Este ítem pertenece a la siguiente institución