dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Galetti, D. | |
dc.creator | de Toledo Piza, A. F R | |
dc.date | 2014-05-27T04:24:06Z | |
dc.date | 2016-10-25T18:12:14Z | |
dc.date | 2014-05-27T04:24:06Z | |
dc.date | 2016-10-25T18:12:14Z | |
dc.date | 1988-03-01 | |
dc.date.accessioned | 2017-04-06T00:41:24Z | |
dc.date.available | 2017-04-06T00:41:24Z | |
dc.identifier | Physica A: Statistical Mechanics and its Applications, v. 149, n. 1-2, p. 267-282, 1988. | |
dc.identifier | 0378-4371 | |
dc.identifier | http://hdl.handle.net/11449/63849 | |
dc.identifier | http://acervodigital.unesp.br/handle/11449/63849 | |
dc.identifier | 10.1016/0378-4371(88)90219-1 | |
dc.identifier | 2-s2.0-45549118603 | |
dc.identifier | http://dx.doi.org/10.1016/0378-4371(88)90219-1 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/885813 | |
dc.description | We extend the Weyl-Wigner transformation to those particular degrees of freedom described by a finite number of states using a technique of constructing operator bases developed by Schwinger. Discrete transformation kernels are presented instead of continuous coordinate-momentum pair system and systems such as the one-dimensional canonical continuous coordinate-momentum pair system and the two-dimensional rotation system are described by special limits. Expressions are explicitly given for the spin one-half case. © 1988. | |
dc.language | eng | |
dc.relation | Physica A: Statistical Mechanics and Its Applications | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.title | An extended Weyl-Wigner transformation for special finite spaces | |
dc.type | Otro | |