dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorGaletti, D.
dc.creatorde Toledo Piza, A. F R
dc.date2014-05-27T04:24:06Z
dc.date2016-10-25T18:12:14Z
dc.date2014-05-27T04:24:06Z
dc.date2016-10-25T18:12:14Z
dc.date1988-03-01
dc.date.accessioned2017-04-06T00:41:24Z
dc.date.available2017-04-06T00:41:24Z
dc.identifierPhysica A: Statistical Mechanics and its Applications, v. 149, n. 1-2, p. 267-282, 1988.
dc.identifier0378-4371
dc.identifierhttp://hdl.handle.net/11449/63849
dc.identifierhttp://acervodigital.unesp.br/handle/11449/63849
dc.identifier10.1016/0378-4371(88)90219-1
dc.identifier2-s2.0-45549118603
dc.identifierhttp://dx.doi.org/10.1016/0378-4371(88)90219-1
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/885813
dc.descriptionWe extend the Weyl-Wigner transformation to those particular degrees of freedom described by a finite number of states using a technique of constructing operator bases developed by Schwinger. Discrete transformation kernels are presented instead of continuous coordinate-momentum pair system and systems such as the one-dimensional canonical continuous coordinate-momentum pair system and the two-dimensional rotation system are described by special limits. Expressions are explicitly given for the spin one-half case. © 1988.
dc.languageeng
dc.relationPhysica A: Statistical Mechanics and Its Applications
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.titleAn extended Weyl-Wigner transformation for special finite spaces
dc.typeOtro


Este ítem pertenece a la siguiente institución