dc.creatorAzevedo, Zina Maria Almeida de
dc.creatorMoore, Daniella Campelo Batalha Cox
dc.creatorMatos, Flavia Aparecida Alves de
dc.creatorFonseca, Vania Matos
dc.creatorPeixoto, Maria Virginia Marques
dc.creatorElsas, Maria Ignez Capella Gaspar
dc.creatorSantinoni, Erika
dc.creatorAnjos, Luiz Antonio dos
dc.creatorRamos, Eloane Gonçalves
dc.date2013-03-04T15:12:22Z
dc.date2013-03-04T15:12:22Z
dc.date2013
dc.date.accessioned2023-09-26T20:25:56Z
dc.date.available2023-09-26T20:25:56Z
dc.identifierAZEVEDO, Zina Maria Almeida de et al.Bioelectrical impedance parameters in critically ill children: Importance of reactance and resistance. Clinical Nutrition, Edinburgh, v. 13, n. 37, p. 1-6, 2013.
dc.identifierhttps://www.arca.fiocruz.br/handle/icict/6340
dc.identifier10.1016/j.clnu.
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8856765
dc.descriptionFIOCRUZ, FAPERJ, CNPq
dc.descriptionBackground & aims: Currently, there are no clinical or laboratory parameters that can be used efficiently to predict the prognosis of critically ill patients, but in some situations, raw bioelectrical impedance parameters have been shown to be useful. The purpose of this study was to investigate the behavior of reactance and resistance in the severity of the critically ill pediatric patient. Methods: We prospectively analyzed bioelectrical impedance in a sample of 332 critically ill pediatric patients submitted to mechanical ventilation. The values taken on admission and discharge were correlated with major outcomes to the critically ill patient. Results: We found an association of low values of Xc/H (<27.7 Ohm/m) and of R/H (<563.6 Ohm/m) on admission with multiple organs dysfunction greater or equal to 4. Both R/H and Xc/H increased significantly between admission and discharge among survivors, while among nonsurvivors there was a trend of decrease between admission and the last measurement before death. Conclusions: Bioelectrical impedance is a useful tool for monitoring of critically ill pediatric patients. A possible role of R/H and Xc/H, especially the latter, as a predictive biomarker of evolution for septic shock and organ dysfunction still remains to be elucidated.
dc.formatapplication/pdf
dc.languageeng
dc.publisherChurchill Livingstone
dc.relationHarrison C. Sepsis: calming the cytokine storm. Nat Rev Drug Discov 2010;9:360e1.
dc.relationShann F, Pearson G, Slater A, Wilkinson K. Paediatric index of mortality (PIM): a mortality prediction model for children in intensive care. Intensive Care Med 1997;23:201e7.
dc.relationPollack MM, Ruttimann UE, Getson PR. Pediatric Risk of Mortality (PRISM) score. Crit Care Med 1988;16:1110e6.
dc.relationBarbosa-Silva MC, Barros AJ. Bioelectrical impedance analysis in clinical practice: a new perspective on its use beyond body composition equations. Curr Opin Clin Nutr Metab Care 2005;8:311e7.
dc.relationShime N, Ashida H, Chihara E, Kageyama K, Katoh Y, Yamagishi M, et al. Bioelectrical impedance analysis for assessment of severity of illness in pediatric patients after heart surgery. Crit Care Med 2002;30:518e20.
dc.relationToso S, Piccoli A, Gusella M, Menon D, Bononi A, Crepaldi G, et al. Altered tissue electric properties in lung cancer patients as detected by bioelectric impedance vector analysis. Nutrition 2000;16:120e4.
dc.relationGupta D, Lammersfeld CA, Vashi PG, King J, Dahl SL, Grutsch JF, et al. Bioelectrical impedance phase angle as a prognostic indicator in breast cancer. BMC Cancer 2008;8:249.
dc.relationSchwenk A, Beisenherz A, Römer K, Kremer G, Salzberger B, Elia M. Phase angle from bioelectrical impedance analysis remains an independent predictive marker in HIV-infected patients in the era of highly active antiretroviral treatment. Am J Clin Nutr 2000;72:496e501.
dc.relationChertow GM, Lazarus JM, Lew NL, Ma L, Lowrie EG. Bioimpedance norms for the hemodialysis population. Kidney Int 1997;52:1617e21.
dc.relationMushnick R, Fein PA, Mittman N, Goel N, Chattopadhyay J, Avram MM. Relationship of bioelectrical impedance parameters to nutrition and survival in peritoneal dialysis patients. Kidney Int 2003;64:53e6.
dc.relationFein PA, Gundumalla G, Jorden A, Matza B, Chattopadhyay J, Avram MM. Usefulness of bioelectrical impedance analysis in monitoring nutrition status and survival of peritoneal dialysis patients. Adv Perit Dial 2002;18:195e9.
dc.relationMaggiore Q, Nigrelli S, Ciccarelli C, Grimaldi C, Rossi GA, Michelassi C. Nutritional and prognostic correlates of bioimpedance indexes in hemodialysis patients. Kidney Int 1996;50:2103e8.
dc.relationAzevedo ZMA, Silva DR, Dutra MVP, Gaspar-Elsas MI, Barbosa-Silva MC, Fonseca VM. Associação entre ângulo de fase, PRISM I e gravidade da sepse. RBTI 2007;19:297e303.
dc.relationGoldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005;6:2e8.
dc.relationBernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. The American European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994;149:818e24.
dc.relationBioelectrical impedance analysis in body composition measurement. National Institutes of Health Technology Assessment Conference. December 12e14. Am J Clin Nutr 1996;64:524Se32S.
dc.relationGartner A, Maire B, Delpeuch, Sarda P, Dupuy RP, Rieu D. Importance of electrode position in bioelectrical impedance analysis. Am J Clin Nutr 1992;56: 1067e8.
dc.relationPiccoli A, Rossi B, Pillon L, Bucciante G. A new method for monitoring body fluid variation by bioimpedance analysis: the RXc graph. Kidney Int 1994;46: 534e9.
dc.relationTanabe RF, de Azevedo ZM, Fonseca VM, Peixoto MV, dos Anjos LA, Gaspar- Elsas MI, et al. Distribution of bioelectrical impedance vector values in multi ethnic infants and pre-school children. Clin Nutr 2012;31:144e8.
dc.relationPiccoli A, Pastori G. BIVA software. Padova, Italy: Department of Medical and Surgical Sciences, University of Padova. Available at: e-mail: apiccoli@unipd.it; 2002.
dc.relationBaumgartner RN, Chumlea WC, Roche AF. Bioelectric impedance phase angle and body composition. Am J Clin Nutr 1988;48:16e23.
dc.relationCrouser ED. Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion 2004;4:729e41.
dc.relationChuang CC, Shiesh SC, Chi CH, Tu YF, Hor LI, Shieh CC, et al. Serum total antioxidant capacity reflects severity of illness in patients with severe sepsis. Crit Care 2006;10:R36.
dc.relationGarrabou G, Moren C, Lopez S, Tobias E, Cardellach F, Miró O, et al. The effects of sepsis on mitochondria. JID 2012;205:392e400.
dc.relationGalley HF. Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth 2011;107:57e64.
dc.relationBrealey D, Karyampudi S, Jacques TS, Novelli M, Stidwill R, Taylor V, et al. Mitochondrial dysfunction in a long term rodent model of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol 2004;286:491e7.
dc.rightsrestricted access
dc.subjectSepsis
dc.subjectElectric Impedance
dc.subjectChild
dc.subjectMultiple Organ Failure
dc.subjectCritical Illness
dc.subjectImpedância Elétrica
dc.subjectInsuficiência de Múltiplos Órgãos
dc.subjectEstado Terminal
dc.titleBioelectrical impedance parameters in critically ill children: Importance of reactance and resistance
dc.typeArticle


Este ítem pertenece a la siguiente institución