dc.creatorSilva, André R.F.
dc.creatorLima, Diogo B.
dc.creatorKurt, Louise U.
dc.creatorDupré, Mathieu
dc.creatorChamot-Rooke, Julia
dc.creatorSantos, Marlon D.M.
dc.creatorNicolau, Carolina Alves
dc.creatorValente, Richard Hemmi
dc.creatorBarbosa, Valmir C.
dc.creatorCarvalho, Paulo C.
dc.date2022-02-14T20:01:45Z
dc.date2022-02-14T20:01:45Z
dc.date2021
dc.date.accessioned2023-09-26T20:16:04Z
dc.date.available2023-09-26T20:16:04Z
dc.identifierSILVA, André R. F. et al. Leveraging the partition selection bias to achieve a high-quality clustering of mass spectra. Journal of Proteomics, v. 245, 104282, p. 1 - 8, June 2021.
dc.identifier1874-3919
dc.identifierhttps://www.arca.fiocruz.br/handle/icict/51188
dc.identifier10.1016/j.jprot.2021.104282
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8852893
dc.descriptionIn proteomics, the identification of peptides from mass spectral data can be mathematically described as the partitioning of mass spectra into clusters (i.e., groups of spectra derived from the same peptide). The way partitions are validated is just as important, having evolved side by side with the clustering algorithms themselves and given rise to many partition assessment measures. An assessment measure is said to have a selection bias if, and only if, the probability that a randomly chosen partition scoring a high value depends on the number of clusters in the partition. In the context of clustering mass spectra, this might mislead the validation process to favor clustering algorithms that generate too many (or few) spectral clusters, regardless of the underlying peptide sequence. A selection bias toward the number of peptides is desirable for proteomics as it estimates the number of peptides in a complex protein mixture. Here, we introduce an assessment measure that is purposely biased toward the number of peptide ion species. We also introduce a partition assessment framework for proteomics, called the Partition Assessment Tool, and demonstrate its importance by evaluating the performance of eight clustering algorithms on seven proteomics datasets while discussing the trade-offs involved. Significance: Clustering algorithms are widely adopted in proteomics for undertaking several tasks such as speeding up search engines, generating consensus mass spectra, and to aid in the classification of proteomic profiles. Choosing which algorithm is most fit for the task at hand is not simple as each algorithm has advantages and disadvantages; furthermore, specifying clustering parameters is also a necessary and fundamental step. For example, deciding on whether to generate “pure clusters” or fewer clusters but accepting noise. With this as motivation, we verify the performance of several widely adopted algorithms on proteomic datasets and introduce a theoretical framework for drawing conclusions on which approach is suitable for the task at hand.
dc.formatapplication/pdf
dc.languageeng
dc.publisherElsevier
dc.rightsopen access
dc.subjectAgrupamento
dc.subjectEspectros de massa em tandem
dc.subjectFerramenta de avaliação de partição
dc.subjectClustering
dc.subjectTandem mass spectra
dc.subjectPartition assessment tool
dc.titleLeveraging the partition selection bias to achieve a high-quality clustering of mass spectra
dc.typeArticle


Este ítem pertenece a la siguiente institución